Vol. 103

Latest Volume
All Volumes
All Issues
2021-07-05

Bandpass Unconditionally Stable CE-BOR-PML Scheme with CNDG Algorithm for Rotational Symmetric Simulation

By Shihong Wu, Lining Liu, Yunyun Dong, Feng Su, and Xiangguang Chen
Progress In Electromagnetics Research M, Vol. 103, 81-90, 2021
doi:10.2528/PIERM21051401

Abstract

Unconditionally stable approximate Crank-Nicolson (CN) perfectly matched layer (PML) implementation is proposed to treat open region problems for a bandpass rotational symmetric structure. To be more specific, this implementation is based upon the CN Douglas-Gunn (DG) procedure and the complex envelope (CE) method in body of revolution (BOR) finite-difference time-domain (FDTD) lattice. The proposed scheme inherits the advantages of the CNDG procedure, CE method, and BOR-FDTD algorithm which can improve the efficiency, enhance the absorption, and maintain the calculation accuracy. The effectiveness which includes accuracy, efficiency, occupied resources, and absorption is illustrated through a numerical example. The numerical results reveal that the proposed scheme provides considerable accuracy, creditable absorption and outstanding efficiency. Meanwhile, it can also verify that the proposed scheme is stable without the limitation of Courant-Friedrich- Levy (CFL) condition.

Citation


Shihong Wu, Lining Liu, Yunyun Dong, Feng Su, and Xiangguang Chen, "Bandpass Unconditionally Stable CE-BOR-PML Scheme with CNDG Algorithm for Rotational Symmetric Simulation," Progress In Electromagnetics Research M, Vol. 103, 81-90, 2021.
doi:10.2528/PIERM21051401
http://jpier.org/PIERM/pier.php?paper=21051401

References


    1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    2. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 832-839, 1996.
    doi:10.1109/22.506441

    3. Ramadan, O., "Complex envelope Crank Nicolson PML algorithm for band-limited electromagnetic applications," Electron. Lett., Vol. 42, No. 23, 2006.
    doi:10.1049/el:20062511

    4. Pursel, J. D. and P. M. Goggans, "A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources," IEEE Trans. Antennas Propag., Vol. 47, No. 1, 9-15, 1999.
    doi:10.1109/8.752978

    5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

    6. Namiki, T., "3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, 2000.
    doi:10.1109/22.873904

    7. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
    doi:10.1049/el:20052381

    8. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, 2004.
    doi:10.1049/el:20046040

    9. Ogurtsov, S. and G. Pan, "An updated review of general dispersion relation for conditionally and unconditionally stable FDTD algorithms," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2572-2583, 2008.
    doi:10.1109/TAP.2008.927569

    10. Ju, S., K.-Y. Jung, and H. Kim, "Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 9, 414-416, 2003.
    doi:10.1109/LMWC.2003.815696

    11. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, 2004.
    doi:10.1109/TAP.2004.835142

    12. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
    doi:10.1049/el:20030416

    13. Shi, X. Y. and X. Y. Jiang, "Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1103-1111, 2020.
    doi:10.1002/mop.32150

    14. Sun, G. and C. W. Trueman, "Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations," Electron. Lett., Vol. 40, No. 10, 589-590, 2004.
    doi:10.1049/el:20040420

    15. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, 2006.
    doi:10.1109/TMTT.2006.873639

    16. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, 2008.
    doi:10.1109/TMTT.2007.914641

    17. Jiang, H. L., et al., "Computationally efficient CN-PML for EM simulations," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 12, 4646-4655, 2019.
    doi:10.1109/TMTT.2019.2946160

    18. Wu, P., Y. Xie, H. Jiang, and T. Natsuki, "Performance enhanced Crank-Nicolson boundary conditions for EM problems," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1513-1527, 2021.
    doi:10.1109/TAP.2020.3016403

    19. Jiang, H. L., J. F. Zhang, W. X. Jiang, and T. J. Cui, "Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials," IEEE Ante. Wirel. Propag. Lett., Vol. 16, 2006-2009, 2017.
    doi:10.1109/LAWP.2017.2692883

    20. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-GPU accelerated unconditionally stable Crank," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
    doi:10.2528/PIER10020606

    21. Rouf, H. K., "Improvement of computational performance of implicit finite difference time domain method," Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015.
    doi:10.2528/PIERM15052402

    22. Long, S.-Y., W.-J. Chen, Q.-W. Liang, and M. Zhao, "A general ADE-FDTD with Crank-Nicolson scheme for the simulation of dispersive structures," Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019.
    doi:10.2528/PIERL19040801

    23. Fajardo, J. E., J. Galv´an, F. Vericat, C. M. Carlevaro, and R. M. Irastorza, "“Phaseless microwave imaging of dielectric cylinders: An artificial neural networks-based approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
    doi:10.2528/PIER19080610

    24. Wu, P. Y., et al., "Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma," Inter. J. RF Micro. Comp.-Aided Engi., Vol. 33, No. 1, e22011, 2020.

    25. Li, J. X. and P. Y. Wu, "Efficient PML implementation based on the unconditionally stable CN-FDTD algorithm for anisotropic magnetized plasma," Optik, Vol. 171, 468-475, 2018.
    doi:10.1016/j.ijleo.2018.06.072

    26. Chen, H. L. and B. Chen, "Anisotropic-medium PML for ADI-BOR-FDTD method," IEEE Micro. Wirel. Compo. Lett., Vol. 18, No. 4, 221-223, 2008.
    doi:10.1109/LMWC.2008.918842

    27. Li, J. X., W. Jiao, and X. M. Zhao, "Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma," IEEE Trans. Electro. Compat., Vol. 60, No. 6, 2069-2072, 2018.
    doi:10.1109/TEMC.2017.2788421

    28. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Higher-order approximate CN-PML theory for magnetized ferrite simulations," Advan. Theory Simulat., Vol. 3, No. 4, 2020.

    29. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, DRDO, Vol. 62, No. 4, 228-235, 2012.
    doi:10.14429/dsj.62.792

    30. Mukherjee, B., "Numerical solution in FDTD for absorbing boundary condition over dielectric surfaces," Journal of Advance Research in Scientific Computing, IASR, Vol. 4, No. 1, 13-23, 2012.

    31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Com. Phys., Vol. 114, No. 2, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    32. Berenger, J. P., Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgan & Claypool, 2007.

    33. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates," Microw. Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
    doi:10.1002/mop.4650071304

    34. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microw. Guided Wave Lett., Vol. 6, 447-449, 1996.
    doi:10.1109/75.544545

    35. Ramadan, O., "Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations," Electron. Lett., Vol. 43, No. 5, 2007.
    doi:10.1049/el:20073945

    36. Chen, J., J. G. Wang, and C. M. Tian, "Using weakly conditionally stable-body of revolution-finite-difference time-domain method to simulate dielectric film-coated circular waveguide," IET Microw. Antennas Propag., Vol. 9, No. 9, 853-860, 2015.
    doi:10.1049/iet-map.2014.0441

    37. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Performance-enhanced complex envelope ADI-PML for bandpass EM simulation," IEEE Micro. Wire. Compon. Lett., Vol. 30, No. 8, 729-732, 2020.
    doi:10.1109/LMWC.2020.3007454

    38. Nakazono, Y. and H. Asai, "Application of relaxation-based technique to ADI-FDTD method and its estimation," 2007 IEEE International Symposium on Circuits and Systems, 1489-1492, 2007.
    doi:10.1109/ISCAS.2007.378585

    39. Farahat, N., J. Carrion, and L. Morales, "PML termination of conducting media in the finite difference time domain method for Bodies of Revolution (BORs)," Workshop on Computational Electromagnetics in Time-Domain, 2005, CEM-TD 2005, No. 96–99, Atlanta, GA, USA, 2015.

    40. Appannagarri, N., et al., "Modeling phased array antennas in Ansoft HFSS," Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510), 323-326, 2000.
    doi:10.1109/PAST.2000.858966

    41. Luo, K., S. Ge, L. Zhang, H. Liu, and J. Xing, "“Simulation analysis of ansys HFSS and CST microwave studio for frequency selective surface," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

    42. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps (Invited review)," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
    doi:10.2528/PIER20061002

    43. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
    doi:10.2528/PIERM10090605

    44. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.
    doi:10.1109/TAP.2007.913089

    45. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photo. Techn. Lett., Vol. 23, No. 12, 801-803, 2011.
    doi:10.1109/LPT.2011.2138123

    46. Singh, G., E. L. Tan, and Z. N. Chen, "Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method," Opt. Lett., Vol. 36, 1494-1496, 2011.
    doi:10.1364/OL.36.001494

    47. Heh, D. Y. and E. L. Tan, "Unconditionally stable multiple one-dimensional ADI-FDTD method for coupled transmission lines," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7488-7492, 2018.
    doi:10.1109/TAP.2018.2872724

    48. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method incorporated with memristor," IEICE Trans. Electronics, Vol. E99-C, Vol. 7, 788-792, 2016.
    doi:10.1587/transele.E99.C.788

    49. Heh, D. Y. and E. L. Tan, "Some recent developments in fundamental implicit FDTD schemes," Asia-Pacific Symp. Electromag. Compat., 153-156, Singapore, 2012.

    50. Yang, Z., E. L. Tan, and D. Y. Heh, "Variants of second-order temporal-accurate 3-D FLODFDTD schemes with three split matrices," IEEE Int. Conf. Comput. Electromagn., 265-267, Guangzhou, 2016.