Vol. 103

Latest Volume
All Volumes
All Issues
2021-06-27

Statistical Channel Models for Millimeter-Wave Wireless Data Centers

By Mohammed Zakarya Zaaimia, Rachida Touhami, Larbi Talbi, Mourad Nedil, and Mustapha Yagoub
Progress In Electromagnetics Research M, Vol. 103, 61-70, 2021
doi:10.2528/PIERM21042501

Abstract

This paper presents a set of statistical channel models based on 60 GHz radio measurements in a server room. The channel models are developed for possible use-cases, corresponding to potential deployment scenarios in wireless data centers (WDCs). A simple parametric channel model is used to model both the deterministic and stochastic channel parameters in the delay domain, within the 57-64 GHz unlicensed band. A simulation framework is accordingly provided to generate channel realizations for WDC use cases. The accuracy of the simulation framework is verified using the delay spread as a validation metric. The reported models are useful for practical system design and evaluation of WDCs millimeter-wave systems.

Citation


Mohammed Zakarya Zaaimia, Rachida Touhami, Larbi Talbi, Mourad Nedil, and Mustapha Yagoub, "Statistical Channel Models for Millimeter-Wave Wireless Data Centers," Progress In Electromagnetics Research M, Vol. 103, 61-70, 2021.
doi:10.2528/PIERM21042501
http://jpier.org/PIERM/pier.php?paper=21042501

References


    1. Hamza, A. S., J. S. Deogun, and D. R. Alexander, "Wireless communication in data centers: A survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1572-1595, 2016.
    doi:10.1109/COMST.2016.2521678

    2. Cheng, C. -L., S. Sangodoyin, and A. Zajic, "Thz cluster-based modeling and propagation characterization in a data center environment," IEEE Access, Vol. 8, No. 56 , 544-558, 2020.

    3. Cheng, C. -L. and A. Zajic, "Characterization of propagation phenomena relevant for 300 GHz wireless data center links," IEEE Transactions on Antennas and Propagation, 2019.

    4. Gentile, C., P. B. Papazian, R. Sun, J. Senic, and J. Wang, "Quasi-deterministic channel model parameters for a data center at 60 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 808-812, 2018.
    doi:10.1109/LAWP.2018.2817066

    5. Celik, A., A. AlGhadhban, B. Shihada, and M. Alouini, "Design and provision of traffic grooming for optical wireless data center networks," IEEE Transactions on Communications, Vol. 67, No. 3, 2245-2259, 2019.
    doi:10.1109/TCOMM.2018.2885808

    6. Katayama, Y., K. Takano, Y. Kohda, N. Ohba, and D. Nakano, "Wireless data center networking with steered-beam mmwave links," 2011 IEEE Wireless Communications and Networking Conference, 2179-2184, IEEE, 2011.
    doi:10.1109/WCNC.2011.5779470

    7. TG11ay, "IEEE 802.11ay use cases. IEEE standard 802.11-2015/625," Tech. Rep., IEEE, 2015.

    8. Zhou, P., K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, and Y. Liu, "IEEE 802.11 ay-based mmWave WLANs: Design challenges and solutions," IEEE Communications Surveys & Tutorials, Vol. 20, No. 3, 1654-1681, 2018.
    doi:10.1109/COMST.2018.2816920

    9. Ghasempour, Y., C. R. da Silva, C. Cordeiro, and E. W. Knightly, "IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s Wi-Fi," IEEE Communications Magazine, Vol. 55, No. 12, 186-192, 2017.
    doi:10.1109/MCOM.2017.1700393

    10. Siamarou, A. G., P. Theofilakos, and A. G. Kanatas, "60 GHz wireless links for HDTV: Channel characterization and error performance evaluation," Progress In Electromagnetics Research, Vol. 36, 195-205, 2013.
    doi:10.2528/PIERC12120507

    z11. Shrivastava, P. and T. Rama Rao, "Performance investigations with antipodal linear tapered slot antenna on 60 GHz radio link in a narrow hallway environment," Progress In Electromagnetics Research, Vol. 58, 69-77, 2015.
    doi:10.2528/PIERC15052104

    12. Zaaimia, M., R. Touhami, L. Talbi, M. Nedil, and M. Yagoub, "60-GHz statistical channel characterization for wireless data centers," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 976-979, 2015.

    13. Zaaimia, M., R. Touhami, V. Fono, L. Talbi, and M. Nedil, "60 GHz wireless data center channel measurements: Initial results," 2014 IEEE International Conference on Ultra-WideBand (ICUWB), 57-61, IEEE, 2014.
    doi:10.1109/ICUWB.2014.6958951

    14. MegaPhase, Megaphase v band test cable, MegaPhase, Tech. Rep. [Online]. Available: www.megaphase.com/wp-content/uploads/2017/01/MegaPhase-V-Band-Test-Cable.pdf..

    15. Millitech, Standard Gain Horn (SGH) 15, smithsinterconnect, Tech. Rep. [Online]. Avail-able: www.smithsinterconnect.com/products/defence-antenna-systems/ antenna-quasioptical-products/standard-gain-horn-(sgh)/..

    16. Tariq, S. A. M., C. L. Despins, S. Affes, and C. Nerguizian, "Angular dispersion of a scattered underground wireless channel at 60 GHz," IEEE Access, Vol. 8, No. 67 , 572-580, 2020.

    17. Ghaddar, M., I. B. Mabrouk, M. Nedil, K. Hettak, and L. Talbi, "Deterministic modeling of 5g millimeter-wave communication in an underground mine tunnel," IEEE Access, Vol. 7, No. 116 , 519-528, 2019.

    18. Kyro, M., K. Haneda, J. Simola, K.-I. Takizawa, H. Hagiwara, and P. Vainikainen, "Statistical channel models for 60 GHz radio propagation in hospital environments," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1569-1577, 2011.
    doi:10.1109/TAP.2011.2180349

    19. Haneda, K., J. Jarvelainen, A. Karttunen, M. Kyro, and J. Putkonen, "A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2694-2704, 2015.
    doi:10.1109/TAP.2015.2412147