Vol. 101
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-23
Research on the Model and Characteristics of Underground Magnetic Induction Communication Channel
By
Progress In Electromagnetics Research M, Vol. 101, 89-100, 2021
Abstract
The traditional electromagnetic wave wireless communication in the underground environment has the problem of unstable channel path loss, large antenna size, high path loss, etc. To address these issues, the channel models of magnetic induction communication and magnetic induction waveguide communication based on quasi-static field coupling are proposed, and the characteristics of magnetic field strength, path loss, bandwidth, and channel capacity are analyzed in detail. The results show that the magnetic induction communication system channel is stable, compared with the ordinary induction communication, and the path loss of magnetic induction waveguide communication is reduced a lot, even in the case of high noise and transmission distance increased by more than 20 times. But the bandwidths of the two ways are small and similar. The path loss and bandwidth decide the system capacity, and system capacity is also affected by the number of turns, working frequency, coil resistance, and size.
Citation
Bao Heng Liu, Yongbin Wang, and Tianhui Fu, "Research on the Model and Characteristics of Underground Magnetic Induction Communication Channel," Progress In Electromagnetics Research M, Vol. 101, 89-100, 2021.
doi:10.2528/PIERM21010801
References

1. Akyildiz, I. F. and E. P. Stuntebeck, "Wireless underground sensor networks: Research challenges," Ad Hoc Netw., Vol. 4, No. 6, 669-686, 2006.
doi:10.1016/j.adhoc.2006.04.003

2. Shi, W. J., Y. J. Sun, and S. Li, "Theory and Key technology of wireless magnetic induction sensor network in challenging environment," Industry and Mine Automation, Vol. 42, No. 6, 20-25, 2016.

3. Akyildiz, I. F. and E. P. Stuntebeck, "Underground wireless communication using magnetic induction," IEEE ICC, 1-5, 2009.

4. Jack, N. and K. Shenai, "Magnetic induction ic for wireless communication in RF-impenetrable media," IEEE WMED, Vol. 13, No. 4, 47-48, 2007.

5. Sun, Z. and I. F. Akyildiz, "Optimal deployment for magnetic induction-based wireless networks in challenged environments," IEEE Trans. Wirel. Commun., Vol. 12, No. 3, 996-1005, 2013.
doi:10.1109/TWC.2013.011713.111896

6. Akyildiz, I. F., W. Su, and Y. Sankarasubramaniam, "Wireless sensor networks: A survey," Comput. Netw., Vol. 38, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

7. Kalinin, V. A., K. H. Ringhofer, and L. Solymar, "Magneto-inductive waves in one, two, three dimensions," J. Appl. Phys., Vol. 92, No. 10, 6525-6261, 2002.

8. Sun, Z. and I. F. Akyildiz, "Underground wireless communication using magnetic induction," IEEE ICC, 1-5, Dresden, Germany, June 2009.

9. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Trans. Antenn. Propag., Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858

10. Agbinya, J. I. and M. Masihpour, "Magnetic induction channel models and link budgets: A comparison between two Agbinya-Masihpour models," Third International Conference on Communications and Electronics (ICCE), 400-405, 2010.

11. Masihpour, M. and J. I. Agbinya, "Cooperative relay in near field magnetic induction: A new technology for embedded medical communication systems," The Fifth International Conferenceon Broadband and Biomedical Communications, 1-6, 2010.

12. Johnson, I. A. and M. Masihpour, "Power equations and capacity performance of magnetic induction communication systems," IB2Com'10 Conference, 1-6, Malaga, Spain, 2010.

13. Agbinya, J. I., "A magneto-inductive link budget for wireless power transfer and inductive communication systems," Progress In Electromagnetics Research C, Vol. 37, 15-28, 2013.
doi:10.2528/PIERC12120511

14. Wait, J. R., "Subsurface electromagnetic fields of a circular loop of currentlocated above ground," IEEE Trans. Antenn. Propag., Vol. 20, No. 4, 520-522, 1972.
doi:10.1109/TAP.1972.1140232

15. Yan, L. Y., J. A. Waynert, and C. Sunderman, "Measurements and modeling of through-the-earth communications for coal mines," IEEE Trans. Ind. Appl., Vol. 49, No. 5, 1979-1983, 2013.
doi:10.1109/TIA.2013.2260116

16. Li, L., M. C. Vuran, and I. F. Akyildiz, "Characteristics of underground channel for wireless underground sensor networks," Med-Hoc-Net'07, 92-99, Corfu, Greece, June 2007.

17. Sun, Z. and I. F. Akyildiz, "On capacity of magnetic induction-based wireless underground sensor networks," 2012 Proceedings of the IEEE INFOCOM, 370-378, Orlando, USA, 2012.