Vol. 101
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-09
Spoof Surface Plasmon Polaritons and Half-Mode Substrate Integrated Waveguide Based Compact Band-Pass Filter for Radar Application
By
Progress In Electromagnetics Research M, Vol. 101, 25-35, 2021
Abstract
A band-pass filter using spoof surface plasmon polaritons (SSPPs) and half-mode substrate integrated waveguide (HMSIW) for Ka-band RADAR application is proposed. In order to achieve the band-pass response, an HMSIW structure with high pass response and SSPPs with band-stop response are combined. Moreover, to investigate effects of geometric dimensions on the frequency characteristics of the proposed band-pass filter are examined by parametric analysis. It has been observed that lower cut-off and upper frequencies can be individually controlled just by changing the structural parameters. High Frequency Structure Simulator (HFSS) software was utilized to simulate the proposed structure. HFSS is the simulation tool for complex 3-D geometries and uses the finite element method (FEM). To validate the functionality, the proposed band-pass filter is fabricated on the dielectric material RT duroid 5880 with the dielectric constant εr = 2.2, height h = 0.508 mm, and dissipation factor tanδ = 4 × 10-4. The measured result shows return loss better than -10 dB and insertion loss less than 1.25 dB with the 3 dB fractional bandwidth (FBW) of 44.02% at the center frequency of 7.95 GHz.
Citation
Keyur Mahant, Hiren Mewada, Amit Patel, Alpesh D. Vala, and Jitendra P. Chaudhari, "Spoof Surface Plasmon Polaritons and Half-Mode Substrate Integrated Waveguide Based Compact Band-Pass Filter for Radar Application," Progress In Electromagnetics Research M, Vol. 101, 25-35, 2021.
doi:10.2528/PIERM20121803
References

1. Brown, B. K., et al. "Traffic radar system,", U.S. Patent No. 4,335,382, Jun. 15, 1982.
doi:10.1201/9781420052220

2. Held, G., Inter-and Intra-vehicle Communications, CRC Press, 2007.

3. Marcuvitz, N., Waveguide Handbook, No. 21, IET, 1951.

4. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.
doi:10.1109/TMTT.2004.839303

5. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, 2005.
doi:10.1049/iet-map.2010.0463

6. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1103/PhysRev.106.874

7. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Physical Review, Vol. 106, No. 5, 874, 1957.
doi:10.1038/nature01937

8. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1007/0-387-37825-1

9. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007.
doi:10.1063/1.4808350

10. Shen, X. and T. J. Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Applied Physics Letters, Vol. 102, No. 21, 211909, 2013.
doi:10.1080/09205071.2019.1632747

11. Mahant, K. and H. Mewada, "A novel Substrate IntegratedWaveguide (SIW) based highly selective filter for radar applications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 13, 1718-1725, 2019.
doi:10.2174/2210327909666191026093137

12. Mahant, K. and H. Mewada, "Substrate integrated waveguide based bandpass filter with defected ground structure for FMCW radar application," International Journal of Sensors Wireless Communications and Control, Vol. 10, No. 3, 421-429, 2020.
doi:10.1016/j.aeue.2018.08.009

13. Khorand, T. and M. Sajjad Bayati, "Novel half-mode substrate integrated waveguide bandpass filters using semi-hexagonal resonators," AEU - International Journal of Electronics and Communications, Vol. 95, 52-58, 2018.

14. Mahant, K., et al. "HMSIW based highly selective filter for radar applications," Circuit World, 2020.
doi:10.1016/j.aeue.2018.12.022

15. Máximo-Gutiérrez, C., J. Hinojosa, and A. Alvarez-Melcon, "Design of wide band-pass Substrate Integrated Waveguide (SIW) filters based on stepped impedances," AEU - International Journal of Electronics and Communications, Vol. 100, 1-8, 2019.
doi:10.1002/mmce.21508

16. Mahant, K. and H. Mewada, "Substrate Integrated Waveguide based dual-band bandpass filter using split ring resonator and defected ground structure for SFCW Radar applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 9, e21508, 2018.

17. Patel, A., et al. "Design of highly selective bandpass filters for communication between two satellites at K band frequency," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), IEEE, 2015.
doi:10.9734/JSRR/2015/14076

18. Zhang, Q., et al. "A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters," Scientific Reports, Vol. 5, No. 1, 1-9, 2015.
doi:10.1109/LMWC.2018.2869290

19. Chen, P., et al. "Hybrid spoof surface plasmonpolariton and substrate integrated waveguide broadband bandpass filter with wide out-of-band rejection," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 984-986, 2018.
doi:10.1002/mop.32551

20. Mittal, G. and N. P. Pathak, "Spoof surface plasmonpolaritons based microwave bandpass filter," Microwave and Optical Technology Letters, Vol. 63, No. 1, 51-57, 2021.

21. Rudramuni, K., et al. "Compact bandpass filter based on hybrid spoof surface plasmon and substrate integrated waveguide transmission line," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), IEEE, 2017.

22. Singh, N., et al. "Substrate integrated waveguide wideband and ultra-wideband bandpass filters using multimode resonator," Advances in VLSI, Communication, and Signal Processing, 579-586, Springer, Singapore, 2020.