Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-19

Addressing Grating Lobes in Linear Scanning Phased Arrays with Self-Nulling Elements and Optimized Amplitude Distributions

By Zabed Iqbal and Maria Pour
Progress In Electromagnetics Research M, Vol. 100, 151-161, 2021
doi:10.2528/PIERM20120806

Abstract

An effective method to reduce grating lobes in linear scanning phased array antennas with large element spacing of one wavelength is presented. The proposed technique is based on employing self-nulling antenna elements by simultaneously exciting the first two modes in a circular microstrip patch antenna to partially nullify the grating lobes. More importantly, a modified amplitude tapering is optimized in the array level to facilitate the grating lobe reduction for relatively wide scan angles up to ±60°. Analytical results of a 21-element linear array are fully presented, and a -22.5 dB grating lobe reduction for up to ±60° scan angles is reported using the proposed method, followed by the results of a smaller array for validation purposes.

Citation


Zabed Iqbal and Maria Pour, "Addressing Grating Lobes in Linear Scanning Phased Arrays with Self-Nulling Elements and Optimized Amplitude Distributions," Progress In Electromagnetics Research M, Vol. 100, 151-161, 2021.
doi:10.2528/PIERM20120806
http://jpier.org/PIERM/pier.php?paper=20120806

References


    1. Fourikis, N., Phased Array-based Systems and Applications, John Wiley & Sons, New York, 1997.

    2. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

    3. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Hoboken, 620 NJ, USA, 2016.

    4. Yu, J., V. A. Khlebnikov, and M.-H. Ka, "Wideband grating-lobe suppression by rotation of the phased array stations in the SKA low-frequency sparse aperture array," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 393-3946, Sept. 2015.
    doi:10.1109/TAP.2015.2452965

    5. Tu, X., G. Zhu, X. Hu, and X. Huang, "Grating lobe suppression in sparse array-based ultrawideband through-wall imaging radar," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1020-1023, Oct. 2016.

    6. Zhao, X., Q. Yang, and Y. Zhang, "A hybrid method for the optimal synthesis of 3-D patterns of sparse concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 515-524, Feb. 2016.
    doi:10.1109/TAP.2015.2504377

    7. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 670-673, Jul. 2011.

    8. Chen, K., H. Chen, L. Wang, and H. Wu, "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 274-277, Jun. 2015.

    9. Lu, B., S. X. Gong, S. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas Wireless Propag. Lett., Vol. 9, 114-117, Feb. 2010.
    doi:10.1109/LAWP.2010.2044230

    10. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1969-1972, Apr. 2017.
    doi:10.1109/LAWP.2017.2690824

    11. Krivosheev, Y. V., A. V. Shishlov, and V. V. Denisenko, "Grating lobe suppression in aperiodic phased array antennas composed of periodic subarrays with large element spacing," IEEE Antennas Propag. Magazine, Vol. 57, No. 1, 76-85, Feb. 2015.
    doi:10.1109/MAP.2015.2397155

    12. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IRE Trans. Antennas Propag., Vol. 9, No. 2, 187-192, Mar. 1961.
    doi:10.1109/TAP.1961.1144961

    13. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Trans. Antennas Propag., Vol. 9, No. 8, 846-850, Aug. 1985.
    doi:10.1109/TAP.1985.1143682

    14. Diawuo, H. A., S. J. Lee, and Y.-B. Jung, "Sidelobe-level reduction of a linear array using two amplitude tapering techniques," IET Microwave Antennas Propag., Vol. 11, No. 10, 1432-1437, Jul. 2017.
    doi:10.1049/iet-map.2016.0883

    15. Goudos, S. K., G. S. Miaris, K. Siakavara, and J. N. Sahalos, "On the orthogonal nonuniform synthesis from a set of uniform linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 6, 313-316, Jul. 2007.

    16. Koretz, A. and B. Rafaely, "Dolph-Chebyshev beampattern design for spherical arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 2417-2420, Jun. 2009.

    17. Buttazzoni, G. and R. Vescovo, "Gaussian approach versus Dolph-Chebyshev synthesis of pencil beams for linear antenna arrays," Electronic Lett., Vol. 54, No. 1, 8-10, Jan. 2018.
    doi:10.1049/el.2017.3098

    18. Abreu, G. T. F. and R. Kohno, "A modified Dolph-Chebyshev approach for the synthesis of low sidelobe beampatterns with adjustable beamwidth," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 3014-3017, Oct. 2003.
    doi:10.1109/TAP.2003.817989

    19. Juntunen, J. O., K. I. Nikoskinen, and K. J. M. Heiska, "Binomial array as a multistate phase diversity antenna," IEEE Trans. Vehicular Tech., Vol. 49, No. 3, 698-705, May 2000.
    doi:10.1109/25.845088

    20. Ling, C.-W., W.-H. Lo, R.-H. Yan, and S.-J. Chung, "Planar binomial curved monopole antennas for ultrawideband communication," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2622-2624, Sept. 2007.
    doi:10.1109/TAP.2007.904140

    21. Iqbal, Z. and M. Pour, "Grating lobe reduction in scanning phased array antennas with large element spacing," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6965-6974, Dec. 2018.
    doi:10.1109/TAP.2018.2874717

    22. Iqbal, Z. and M. Pour, "Exploiting higher order modes for grating lobe reductions in scanning phased array antennas," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 7144-7149, Aug. 2019.
    doi:10.1109/TAP.2019.2934822

    23. Iqbal, Z. and M. Pour, "Grating lobe mitigation in scanning planar phased array antennas," IEEE Int. Symp. Phased Array Systems and Tech., 1-3, Waltham, MA, USA, Oct. 15-18, 2019.

    24. Haung, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 9, 991-994, Sept. 1984.
    doi:10.1109/TAP.1984.1143455

    25. Iqbal, Z. and M. Pour, "Amplitude control null steering in a multi-mode patch antenna," Progress In Electromagnetics Research Letters, Vol. 82, 107-112, 2019.
    doi:10.2528/PIERL19010710

    26. GA Toolbox, MATLAB 2017, The MathWorks, Inc., Natick, Massachusetts, United States, [online] Available: https://www.mathworks.com/products/global-optimization.html.

    27., "High frequency structure simulator (HFSS 18.0),", Canonsburg, PA, USA, ANSYS, 2018.

    28. Pour, M., M. Henley, A. Young, and Z. Iqbal, "Cross-polarization reduction in offset reflector antennas with dual-mode microstrip primary feeds," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 5, 926-930, Mar. 2019.
    doi:10.1109/LAWP.2019.2906018