Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-28

Quasi-TEM Analysis of Symmetrical Shielded Broadside-Coupled Microstrip Lines

By Ali Bououden, Mohamed Lahdi Riabi, Abdelhalim A. Saadi, and Mustapha Yagoub
Progress In Electromagnetics Research M, Vol. 100, 213-223, 2021
doi:10.2528/PIERM20112707

Abstract

In this work, a numerical quasi-static approach is proposed to efficiently analyze symmetrical shielded broadside-coupled microstrip line (SBCML) structures. Based on the modified least squares boundary residual method combined with a variational technique, this approach allows accurate computation of the electrical/geometrical parameters of different SBCML configurations. The errors for the quasi-TEM electrical parameters range are less than 4%. The proposed technique was demonstrated through successful comparison with data from published works and results obtained from commercial EM simulators like CST-EMS and COMSOL.

Citation


Ali Bououden, Mohamed Lahdi Riabi, Abdelhalim A. Saadi, and Mustapha Yagoub, "Quasi-TEM Analysis of Symmetrical Shielded Broadside-Coupled Microstrip Lines," Progress In Electromagnetics Research M, Vol. 100, 213-223, 2021.
doi:10.2528/PIERM20112707
http://jpier.org/PIERM/pier.php?paper=20112707

References


    1. Grys, D. B., R. Storch, and T. Musch, "A multisection ultra wideband directional coupler in multilayer broadside coupled stripline technology," IEEE Microwave Conf., 39-42, Bochum, Germany, 2016.

    2. Kim, I. B., S. K. Kim, W. Mohyuddin, H. C. Choi, and K. W. Kim, "Design of wideband directional couplers using three types of broadside coupled-lines," IEEE Int. Symp. on Antennas and Propag., 932-933, Okinawa, Japan, 2016.

    3. Kim, S. G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 9, 2148-2152, 2004.
    doi:10.1109/TMTT.2004.834165

    4. Moghaddam, E. S. and A. Ahmadi, "180˚ hybrid using a novel planar balun on suspended substrate for beam forming network applications," Int. J. RF Microw. Comput.-Aided Eng., Vol. 9, e22280, 2020.

    5. Huang, K. F. and C. K. Tzuang, "Characteristics and design of broadside-coupled transmission line at a higher order leaky mode," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 440-447, 2003.
    doi:10.1109/TMTT.2002.807839

    6. Lin, S., H. Cui, L.Wu, W.Wang, and X. Sun, "Design of broadside-coupled parallel line millimetre-wave filters by standard 0.18-μm complimentary metal oxide semiconductor technology," IET Microw. Antennas Propag., Vol. 6, No. 1, 72-78, 2012.
    doi:10.1049/iet-map.2011.0024

    7. Abbosh, A. M., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1941, 2007.
    doi:10.1109/TMTT.2007.904051

    8. Winslow, T. A., "A novel broadside coupler model for MMIC impedance transformer design," IEEE 41st European Microwave Conf., 309-312, Manchester, UK, 2011.

    9. Wong, M. F., V. F. Hanna, O. Picon, and H. Baudrand, "Analysis and design of slot-coupled directional couplers between double-sided substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 12, 2123-2129, 1991.
    doi:10.1109/22.106554

    10. Abbosh, A. M., "Analytical closed-form solutions for different configurations of parallel-coupled microstrip lines," IET Microw. Antennas Propag., Vol. 3, No. 1, 137-147, 2009.
    doi:10.1049/iet-map:20070308

    11. Zhu, N. H., W. Qiu, Y.-B. Pun, and P.-S. Chung, "Analysis of two-layer planar transmission lines with the point matching method," Int. J. Eletron., Vol. 80, No. 1, 99-105, 1996.
    doi:10.1080/002072196137624

    12. Übeyli, E. D. and I. Güler, "Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles," Neurocomputing, Vol. 70, No. 1-3, 296-304, 2006.
    doi:10.1016/j.neucom.2006.01.002

    13. Zitouni, A., H. Bourdoucen, and T. Nait Djoudi, "Quasi-static MoL-based approach for the analysis of multilayer transmission line structures," The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 10, No. 4, 209-216, 1997.
    doi:10.1002/(SICI)1099-1204(199707)10:4<209::AID-JNM268>3.0.CO;2-I

    14. Yamashita, E. and K. Atsuki, "Strip line with rectangular outer conductor and three dielectric layers," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 5, 238-244, 1970.
    doi:10.1109/TMTT.1970.1127205

    15. Liu, J., J. Yang, and A. U. Zaman, "Analytical solutions to characteristic impedance and losses of inverted microstrip gap waveguide based on variational method," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 12, 7049-7057, 2018.
    doi:10.1109/TMTT.2018.2871180

    16. Pantic-Tanner, Z., G. Mavronikolas, and R. Mittra, "A numerical absorbing boundary condition for quasi-TEM analysis of microwave transmission lines using the finite-element method," Microw. Opt. Technol. Lett., Vol. 9, No. 3, 134-136, 1995.
    doi:10.1002/mop.4650090308

    17. Musa, S. M. and M. N. Sadiku, "Finite element approach of shielded, suspended and inverted microstrip lines," Bull. Electr. Eng. Inform., Vol. 2, No. 1, 1-10, 2013.

    18. Xiao, F., M. Norgren, and S. He, "Quasi-TEM approach of coupled-microstrip lines and its application to the analysis of microstrip filters," Int. J. RF Microw. Comput.-Aided Eng., Vol. 22, No. 1, 131-139, 2012.
    doi:10.1002/mmce.20592

    19. Tran, M. and C. Nguyen, "Modified broadside-coupled microstrip lines suitable for MIC and MMIC applications and a new class of broadside-coupled band-pass filters," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 8, 1336-1342, 1993.
    doi:10.1109/22.241672

    20. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
    doi:10.2528/PIER04061601

    21. Tomar, R., Y. M. Antar, and P. Bhartia, "Computer-aided-design (CAD) of suspended-substrate microstrips: An overview," Int. J. RF Microw. Comput.-Aided Eng., Vol. 15, No. 1, 44-55, 2005.
    doi:10.1002/mmce.20050

    22. Riabi, M. L., M. Ahmadpanah, H. Benzina, H. Baudrand, and V. FouadHanna, "Performance of the MLSBR using efficient weighting functions for planar structures," IET Microw. Antennas Propag., Vol. 142, No. 4, 364-368, 1995.
    doi:10.1049/ip-map:19952004

    23. Sakli, H., H. Benzina, T. Aguli, and J.-W. Tao, "A rigorous study of some planar structures with longitudinally magnetized ferrite by a modified LSBR method," International Journal of Microwave and Optical Technology, Vol. 4, 358-367, 2009.

    24. Horno, M., F. L. Mesa, F. Medina, and R. Marques, "Quasi-TEM analysis of multilayered, multiconductor coplanar structures with dielectric and magnetic anisotropy including substrate losses," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1059-1068, 1990.
    doi:10.1109/22.57331

    25. Bahl, I. J. and P. Bhartia, "Analysis of broadside coupled microstriplines," Arch. Elek. Ubertragung., Vol. 34, No. 5, 223-226, May 1980.

    26. Bhartia, P. and P. Pramanick, "Computer-aided design models for broadside-coupled striplines and millimeter-wave suspended substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 3, No. 11, 1476-1481, 1988.
    doi:10.1109/22.8910

    27. Kumar, R., "Design model for broadside-coupled suspended substrate stripline for microwave and millimeter-wave applications," Microw. Opt. Technol. Lett., Vol. 42, No. 4, 328-331, 2004.
    doi:10.1002/mop.20293

    28. Musa, S. M. and M. N. Sadiku, "Modeling of shielded broadside-coupled substrate striplines," Microw. Opt. Technol. Lett., Vol. 51, No. 1, 9-13, 2009.
    doi:10.1002/mop.23960

    29. Bhat, B. and S. K. Koul, Stripline Like Transmission Lines for Microwave Integrated Circuits, 332-961, Wiley, New York, 1989.

    30. Staszek, K., K. Wincza, and S. Gruszczynski, "Rigorous approach for design of differential coupled-line directional couplers applicable in integrated circuits and substrate-embedded networks," Nature Scientific Reports, Vol. 6, 25071, 2016.
    doi:10.1038/srep25071

    31. https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf.