Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Effect of the Nonlinearity on Optical Properties of One-Dimensional Photonic Crystal

By Oumayma Habli, Jihene Zaghdoudi, and Mounir Kanzari
Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021


Nonlinear effect on optical properties of one-dimensional photonic crystal (1D-PC) of the type (HL)n (LH)m (LLHH)k was investigated. It is an asymmetric hybrid Fabry-Perot resonator type of 1D-PC structure which is composed of linear (H layers) and nonlinear (L layers) materials. The linear and nonlinear transmission spectra are graphically illustrated using a numerical approach based on the Transfer Matrix Method (TMM). Results show the appearance of a Perfect Transmission Peak (PTP) in the photonic band gap which makes the structure constitute a monochromatic filter. By analyzing this PTP it is shown that the Full-Width at Half-Maximum (FWHM) depends not only on the number of symmetry layers of the studied 1D-PC but also on the refractive index of the nonlinear layers. The change of the refractive index (Kerr effect) causes a dynamically shift in the band gap including the resonance peak. As a result, such a structure has the potential to be used for designing optical filters and nonlinear optical devices.


Oumayma Habli, Jihene Zaghdoudi, and Mounir Kanzari, "Effect of the Nonlinearity on Optical Properties of One-Dimensional Photonic Crystal," Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021.


    1. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.

    2. Soltani, O., J. Zaghdoudi, and M. Kanzari, "Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films," Physica B: Condensed Matter, Vol. 538, 62-69, 2018.

    3. Asmi, R., N. Ben Ali, and M. Kanzari, "Numerical investigation of light localization in generalized Thue-Morse one-dimensional photonic crystal," Journal of Photonics for Energy, Vol. 6, 034501, 2016.

    4. Trabelsi, Y., N. Ben Ali, Y. Bouazzi, and M. Kanzari, "Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures," Photonic Sensors, Vol. 3, 246-255, 2013.

    5. Lu, T. W., C. C. Wu, C. Wang, and P. T. Lee, "Compressible 1D photonic crystal nanolasers with wide wavelength tuning," Optics Letters, Vol. 42, 2267-2270, 2017.

    6. Soltani, O., J. Zaghdoudi, and M. Kanzari, "High quality factor polychromatic filters based on hybrid photonic structures," Chinese Journal of Physics, Vol. 56, 2479-2487, 2018.

    7. Jena, S., R. B. Tokas, S. Thakur, and D. V. Udupa, "Tunable mirrors and filters in 1D photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.

    8. Habli, O., Y. Bouazzi, and M. Kanzari, "Gas sensing using one-dimensional photonic crystal nanoresonators," Progress In Electromagnetics Research, Vol. 92, 251-263, 2019.

    9. Patermò, G. M., L. Moscardi, S. Donini, D. Ariodanti, I. Kriegel, M. Zani, E. Parisini, F. Scotognella, and G. Lanzani, "Hybrid one-dimensional plasmonic-photonic crystals for optical detection of bacterial contaminants," The Journal of Physical Chemistry Letters, Vol. 10, 4980-4986, 2019.

    10. Konopsky, V. N., E. V. Alieva, S. Y. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, "Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals," Light: Science & Applications, Vol. 5, e16168-e16168, 2016.

    11. McMillan, J. F., M. Yu, D. L. Kwong, and C. W. Wong, "Observation of four-wave mixing in slow-light silicon photonic crystal waveguides," Optics Express, Vol. 18, 15484-15497, 2010.

    12. Zhao, D., Z. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, "Optical bistability in defective photonic multilayers doped by graphene," Optical and Quantum Electronics, Vol. 49, 163, 2017.

    13. Fernando, M. G. and K. Wijewardena Gamalath, "Nonlinear optical properties of photonic crystals," World Scientific News, Vol. 97, 1-27, 2018.

    14. Boyd, R. W., Nonlinear Optics, Academic Press, 2019.

    15. Soon, B. Y., W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Optics Express, Vol. 11, 2007-2018, 2003.

    16. Koroteev, N. I., et al., "Compression of ultrashort light pulses in photonic crystals: When envelopes cease to be slow," Optics Commun., Vol. 159, 191-202, 1999.

    17. Shi, W., M. Shi, and X. Ma, "Tunable CdS/TiO2 all-optical switches with defect layers," Emerging Materials Research, Vol. 8, 123-126, 2019.

    18. Zohrabi, R. and A. Namdar, "Perfect tunable all-optical diode based on periodic photonic crystal grand graded structures," Journal of Optical Communications, Vol. 40, 187-193, 2019.

    19. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.

    20. Samuel, E. P. and D. S. Patil, "Effect of aluminum mole fraction and well width on the probability density spreading in GaN/AlGaN quantum well," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 8, 394, 2007.

    21. Talele, K., E. P. Samuel, and D. S. Patil, "Investigation of near field intensity in GaN MQW in 300-375 nanometer wavelength ranges," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1122-1130, 2008.

    22. Abelès, F., "Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés-Application aux couches minces," Annales de Physique. EDP Sciences, Vol. 12, 596-640, 1950.

    23. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.

    24. Trabelsi, Y., N. Ben Ali, and M. Kanzari, "Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals," Microelectronic Engineering, Vol. 213, 41-46, 2019.

    25. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filter using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.

    26. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional asymmetrical high reflectors for optical telecommunication wavelengths," The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 42, 181-186, 2004.

    27. Zhukovsky, S. V. and A. G. Smirnov, "All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances," Physical Review A, Vol. 83, 023818, 2011.

    28. Jamshidi-Ghaleh, K., Z. Safari, and R. Tanavar, "Enhancement of photonic crystal all-optical diode efficiency with a subwavelength layer," Acta Physica Polonica, A, Vol. 123, 212-214, 2013.

    29. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals," Progress In Electromagnetics Research, Vol. 46, 29-37, 2016.

    30. Peng, R. W., et al., "Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063-3065, 2002.

    31. Mauriz, P. W., M. S. Vasconcelos, and E. L. Albuquerque, "Optical transmission spectra in symmetrical Fibonacci photonic multilayers," Physics Letters A, Vol. 373, 496-500, 2009.

    32. Entezar, S. R. and R. Vatannejad, "1D graded thickness nonlinear structure as an optical diode," Journal of Nonlinear Optical Physics & Materials, Vol. 25, 1650030, 2016.

    33. Zhukovsky, S. V., "Perfect transmission and highly asymmetric light localization in photonic multilayers," Physical Review A, Vol. 81, 053808, 2010.

    34. Namdar, A. and F. Ebadi-Garjan, "All-optical diode action in quasiperiodic fibonacci nanostructures," Acta Physica Polonica A, Vol. 123, 45-47, 2013.

    35. Grigoriev, V. V. and F. Biancalana, "Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue-Morse sequence," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 285-290, 2010.

    36. Maksymov, I. S., L. F. Marsal, and J. Pallares, "Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals," Optics Communications, Vol. 239, 213-222, 2004.

    37. Bhargava, A. and B. Suthar, "Optical switching in kerr nonlinear chalcogenide photonic crystal," Journal of Ovonic Research, Vol. 5, 2009.

    38. Meng, Z. M., Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, "Design of high-Q silicon-polymer hybrid photonic crystal nanobeammicrocavities for low-power and ultrafast all-optical switching," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, 83-92, 2014.

    39. Scalora, M., J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Physical review Letters, Vol. 73, 1368, 1994.

    40. Kumar, A., et al., "Nonlinear transmission and reflection characteristics of plasma/polystyrene one dimensional photonic crystal," Optik, Vol. 125, 393-396, 2014.

    41. Moslemi, F. and K. Jamshidi-Ghaleh, "Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials," Journal of Applied Physics, Vol. 119, 093101, 2016.

    42. Tran, P., "Optical switching with a nonlinear photonic crystal: A numerical study," Optics Letters, Vol. 21, 1138-1140, 1996.