Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-26

High-Sensitive Thermal Sensor Based on a 1D Photonic Crystal Microcavity with Nematic Liquid Crystal

By Haouari Charik, Mounir Bouras, and Hamza Bennacer
Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021
doi:10.2528/PIERM20110404

Abstract

In this study, 1D Photonic Crystal (PhC) with Nematic Liquid Crystal (N-LC) central microcavity is analyzed and discussed using Rigorous Coupled Wave Analysis (RCWA) method. A microcavity is inserted into the 1D PhC by the Air Defect, making it ideal for measuring the properties of an N-LC contained inside the microcavity. Here simulation is considered for N-LC (E7) as a thermal sensor. The principle of photonic crystal thermal sensor operation is studied in the TE mode of the incident beam. We conduct a detailed study of the thermal sensor with differences in the width of central microcavity of N-LC. The sensitivity and quality factor are evaluated. Compared to other photonic crystal sensors mentioned previously, this thermal optical sensor has a much simpler structure and higher sensitivity.

Citation


Haouari Charik, Mounir Bouras, and Hamza Bennacer, "High-Sensitive Thermal Sensor Based on a 1D Photonic Crystal Microcavity with Nematic Liquid Crystal," Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021.
doi:10.2528/PIERM20110404
http://jpier.org/PIERM/pier.php?paper=20110404

References


    1. Chang, Y. H., Y. Y. Jhu, and C. J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, No. 6, 1501-1504, 2012.
    doi:10.1016/j.optcom.2011.10.053

    2. Bougriou, F., et al., "Optofluidic sensor using two-dimensional photonic crystal waveguides," Eur. Phys. J. Appl. Phys., Vol. 62, No. 1, 11201-11205, 2013.
    doi:10.1051/epjap/2013110442

    3. Wu, J. J. and J. X. Gao, "Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optik, Vol. 126, No. 24, 5368-5371, 2015.
    doi:10.1016/j.ijleo.2015.09.148

    4. Ma, L., T. Katagiri, and Y. Matsuura, "Surface-plasmon resonance sensor using silica-core Bragg fiber," Opt. Lett., Vol. 34, No. 7, 1069-1071, 2009.
    doi:10.1364/OL.34.001069

    5. Lai, W., S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, "On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide," Opt. Lett., Vol. 36, 984-986, 2011.
    doi:10.1364/OL.36.000984

    6. Zhang, Y., Y. Zhao, and Q. Wang, "Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity," Sens. Actuators B: Chem., Vol. 209, 431-437, 2015.
    doi:10.1016/j.snb.2014.12.002

    7. Chang, Y., Y. Jhu, and C. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, 1501-1504, 2012.
    doi:10.1016/j.optcom.2011.10.053

    8. Zhang, Y., Y. Zhao, and R. Lv, "A review for optical sensors based on photonic crystal cavities," Sens. Actuators A: Phys., Vol. 233, 374-389, 2015.
    doi:10.1016/j.sna.2015.07.025

    9. Liu, Y. and H. W. M. Salemink, "All-optical on-chip sensor for high refractive index sensing in photonic crystals," EPL, Vol. 107, No. 1-5, 34008, 2014.
    doi:10.1209/0295-5075/107/34008

    10. Zheng, S., B. Shan, M. Ghandehari, and J. Ou, "Sensitivity characterization of cladding modes in long-period gratings photonic crystal¯ber for structural health monitoring," Measurement, Vol. 72, 43-51, 2015.
    doi:10.1016/j.measurement.2015.04.014

    11. Zheng, S., Y. Zhu, and S. Krishnaswamy, "Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity," SPIE, Vol. 8346, 83460D, 2012.

    12. Fenzl, C., T. Hirsch, and O. S. Wolfbeis, "Photonic crystals for chemical sensing and biosensing," Angew. Chem. Int. Edit., Vol. 53, 3318-3335, 2014.
    doi:10.1002/anie.201307828

    13. Gong, Q. H. and X.-Y. Hu, "Ultrafast photonic crystal optical switching," Front. Phys. China, Vol. 1, 171, 2006.
    doi:10.1007/s11467-006-0010-3

    14. Singh, A., K. B. Thapa, and N. Kumar, "Analysis and design of optical biosensors using one-dimensional photonic crystals," Optik, Vol. 126, No. 2, 244-250, 2015.
    doi:10.1016/j.ijleo.2014.08.172

    15. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
    doi:10.2528/PIERM08061302

    16. Mohebbi, M., "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity," J. Sens. Sens. Syst., Vol. 4, No. 1, 209-215, 2015.
    doi:10.5194/jsss-4-209-2015

    17. Sakoda, K., Optical Properties of Photonic Crystals, Vol. 80, Springer Science & Business Media, 2004.

    18. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.

    19. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
    doi:10.1117/1.OE.58.2.027102

    20. Wu, P. C. and W. Lee, "One-dimensional photonic crystals containing memory-enabling liquid crystal defect layers," Proc. SPIE, Vol. 8828, 1-10, 2013.

    21. Mohamed, M. S., M. F. O. Hameed, M. M. El-Okr, and S. S. A. Obayya, "Characterization of one-dimensional liquid crystal photonic crystal structure," Optik, Vol. 127, 8774-8781, 2016.
    doi:10.1016/j.ijleo.2016.06.101

    22. Bouras, M. and A. Hocini, "Mode conversion in magneto-optic rib waveguide made by silica matrix doped with magnetic nanoparticles," Optics Communications, Vol. 363, 138-144, 2016.
    doi:10.1016/j.optcom.2015.11.024

    23. Marthandappa, M., R. Somashekar, and Nagappa, "Electro-optic effects in nematic liquid crystals," Phy. State Sol. (A), 127-259, 1991.

    24. Armand, H. and M. D. Ardakani, "Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 275, 2017.
    doi:10.1017/S1759078715001695

    25. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
    doi:10.1063/1.4959199

    26. Li, J., C. H. Wen, S. Gauza, R. Lu, and S. Wu, "Refractive indices of liquid crystals for display applications," IEEE/OSA J. Disp. Technol., Vol. 1, 51-61, 2005.
    doi:10.1109/JDT.2005.853357

    27. Li, J., S.-T. Wu, B. Stefano, M. Riccardo, and F. Sandro, "Infrared refractive indices of liquid crystals," J. Appl. Phys., Vol. 97, 073501, 2005.
    doi:10.1063/1.1877815

    28. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
    doi:10.1063/1.1635971

    29. Bouzidi, A. and D. Bria, "Low temperature sensor based on one-dimensional photonic crystals," International Conference on Electronic Engineering and Renewable Energy, 157-163, Springer, Singapore, 2018.

    30. Hocini, A., M. Bouras, and H. Amata, "Theoretical investigations on optical properties of magneto-optical thinfilm on ion-exchanged glass waveguide," Opt. Mater., Vol. 35, No. 9, 1669-1674, 2013.
    doi:10.1016/j.optmat.2013.04.026

    31. Dermeche, N., M. Bouras, and R. Abdi-Ghaleh, "Existence of high Faraday rotation and transmittance in magneto photonic crystals made by silica matrix doped with magnetic nanoparticles," Optik, Vol. 198, 163225, 2019.
    doi:10.1016/j.ijleo.2019.163225

    32. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
    doi:10.1063/1.4959199

    33. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
    doi:10.1117/1.OE.58.2.027102

    34. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
    doi:10.1063/1.1635971

    35. Monmayrant, A., et al., "Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: An experimental demonstration," Optics Express, Vol. 25, No. 23, 28288-28294, 2017.
    doi:10.1364/OE.25.028288

    36. D'orazio, A., "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
    doi:10.1080/01468030390111968

    37. Perova, T. S., et al., "Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7," Phy. State Sol. (C), Vol. 4, No. 6, 1961-1965, 2007.
    doi:10.1002/pssc.200674340

    38. Miroshnichenko, A. E., E. Brasselet, and Y. S. Kivshar, "All-optical switching and multistability in photonic structures with liquid crystal defects," Applied Physics Letters, Vol. 92, No. 25, 230, 2008.
    doi:10.1063/1.2949076