Vol. 100
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-26
High-Sensitive Thermal Sensor Based on a 1D Photonic Crystal Microcavity with Nematic Liquid Crystal
By
Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021
Abstract
In this study, 1D Photonic Crystal (PhC) with Nematic Liquid Crystal (N-LC) central microcavity is analyzed and discussed using Rigorous Coupled Wave Analysis (RCWA) method. A microcavity is inserted into the 1D PhC by the Air Defect, making it ideal for measuring the properties of an N-LC contained inside the microcavity. Here simulation is considered for N-LC (E7) as a thermal sensor. The principle of photonic crystal thermal sensor operation is studied in the TE mode of the incident beam. We conduct a detailed study of the thermal sensor with differences in the width of central microcavity of N-LC. The sensitivity and quality factor are evaluated. Compared to other photonic crystal sensors mentioned previously, this thermal optical sensor has a much simpler structure and higher sensitivity.
Citation
Haouari Charik, Mounir Bouras, and Hamza Bennacer, "High-Sensitive Thermal Sensor Based on a 1D Photonic Crystal Microcavity with Nematic Liquid Crystal," Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021.
doi:10.2528/PIERM20110404
References

1. Chang, Y. H., Y. Y. Jhu, and C. J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, No. 6, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053

2. Bougriou, F., et al. "Optofluidic sensor using two-dimensional photonic crystal waveguides," Eur. Phys. J. Appl. Phys., Vol. 62, No. 1, 11201-11205, 2013.
doi:10.1051/epjap/2013110442

3. Wu, J. J. and J. X. Gao, "Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optik, Vol. 126, No. 24, 5368-5371, 2015.
doi:10.1016/j.ijleo.2015.09.148

4. Ma, L., T. Katagiri, and Y. Matsuura, "Surface-plasmon resonance sensor using silica-core Bragg fiber," Opt. Lett., Vol. 34, No. 7, 1069-1071, 2009.
doi:10.1364/OL.34.001069

5. Lai, W., S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, "On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide," Opt. Lett., Vol. 36, 984-986, 2011.
doi:10.1364/OL.36.000984

6. Zhang, Y., Y. Zhao, and Q. Wang, "Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity," Sens. Actuators B: Chem., Vol. 209, 431-437, 2015.
doi:10.1016/j.snb.2014.12.002

7. Chang, Y., Y. Jhu, and C. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053

8. Zhang, Y., Y. Zhao, and R. Lv, "A review for optical sensors based on photonic crystal cavities," Sens. Actuators A: Phys., Vol. 233, 374-389, 2015.
doi:10.1016/j.sna.2015.07.025

9. Liu, Y. and H. W. M. Salemink, "All-optical on-chip sensor for high refractive index sensing in photonic crystals," EPL, Vol. 107, No. 1-5, 34008, 2014.
doi:10.1209/0295-5075/107/34008

10. Zheng, S., B. Shan, M. Ghandehari, and J. Ou, "Sensitivity characterization of cladding modes in long-period gratings photonic crystal¯ber for structural health monitoring," Measurement, Vol. 72, 43-51, 2015.
doi:10.1016/j.measurement.2015.04.014

11. Zheng, S., Y. Zhu, and S. Krishnaswamy, "Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity," SPIE, Vol. 8346, 83460D, 2012.

12. Fenzl, C., T. Hirsch, and O. S. Wolfbeis, "Photonic crystals for chemical sensing and biosensing," Angew. Chem. Int. Edit., Vol. 53, 3318-3335, 2014.
doi:10.1002/anie.201307828

13. Gong, Q. H. and X.-Y. Hu, "Ultrafast photonic crystal optical switching," Front. Phys. China, Vol. 1, 171, 2006.
doi:10.1007/s11467-006-0010-3

14. Singh, A., K. B. Thapa, and N. Kumar, "Analysis and design of optical biosensors using one-dimensional photonic crystals," Optik, Vol. 126, No. 2, 244-250, 2015.
doi:10.1016/j.ijleo.2014.08.172

15. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

16. Mohebbi, M., "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity," J. Sens. Sens. Syst., Vol. 4, No. 1, 209-215, 2015.
doi:10.5194/jsss-4-209-2015

17. Sakoda, K., Optical Properties of Photonic Crystals, Vol. 80, Springer Science & Business Media, 2004.

18. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.

19. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102

20. Wu, P. C. and W. Lee, "One-dimensional photonic crystals containing memory-enabling liquid crystal defect layers," Proc. SPIE, Vol. 8828, 1-10, 2013.

21. Mohamed, M. S., M. F. O. Hameed, M. M. El-Okr, and S. S. A. Obayya, "Characterization of one-dimensional liquid crystal photonic crystal structure," Optik, Vol. 127, 8774-8781, 2016.
doi:10.1016/j.ijleo.2016.06.101

22. Bouras, M. and A. Hocini, "Mode conversion in magneto-optic rib waveguide made by silica matrix doped with magnetic nanoparticles," Optics Communications, Vol. 363, 138-144, 2016.
doi:10.1016/j.optcom.2015.11.024

23. Marthandappa, M., R. Somashekar, and Nagappa, "Electro-optic effects in nematic liquid crystals," Phy. State Sol. (A), 127-259, 1991.

24. Armand, H. and M. D. Ardakani, "Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 275, 2017.
doi:10.1017/S1759078715001695

25. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199

26. Li, J., C. H. Wen, S. Gauza, R. Lu, and S. Wu, "Refractive indices of liquid crystals for display applications," IEEE/OSA J. Disp. Technol., Vol. 1, 51-61, 2005.
doi:10.1109/JDT.2005.853357

27. Li, J., S.-T. Wu, B. Stefano, M. Riccardo, and F. Sandro, "Infrared refractive indices of liquid crystals," J. Appl. Phys., Vol. 97, 073501, 2005.
doi:10.1063/1.1877815

28. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971

29. Bouzidi, A. and D. Bria, "Low temperature sensor based on one-dimensional photonic crystals," International Conference on Electronic Engineering and Renewable Energy, 157-163, Springer, Singapore, 2018.

30. Hocini, A., M. Bouras, and H. Amata, "Theoretical investigations on optical properties of magneto-optical thinfilm on ion-exchanged glass waveguide," Opt. Mater., Vol. 35, No. 9, 1669-1674, 2013.
doi:10.1016/j.optmat.2013.04.026

31. Dermeche, N., M. Bouras, and R. Abdi-Ghaleh, "Existence of high Faraday rotation and transmittance in magneto photonic crystals made by silica matrix doped with magnetic nanoparticles," Optik, Vol. 198, 163225, 2019.
doi:10.1016/j.ijleo.2019.163225

32. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199

33. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102

34. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971

35. Monmayrant, A., et al. "Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: An experimental demonstration," Optics Express, Vol. 25, No. 23, 28288-28294, 2017.
doi:10.1364/OE.25.028288

36. D'orazio, A., "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
doi:10.1080/01468030390111968

37. Perova, T. S., et al. "Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7," Phy. State Sol. (C), Vol. 4, No. 6, 1961-1965, 2007.
doi:10.1002/pssc.200674340

38. Miroshnichenko, A. E., E. Brasselet, and Y. S. Kivshar, "All-optical switching and multistability in photonic structures with liquid crystal defects," Applied Physics Letters, Vol. 92, No. 25, 230, 2008.
doi:10.1063/1.2949076