Vol. 99
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-16
A Conformal Quasi-Isotropic Dielectric Resonator Antenna for Wireless Capsule Endoscope Application
By
Progress In Electromagnetics Research M, Vol. 99, 211-221, 2021
Abstract
A conformal quasi-isotropic dielectric resonator antenna (DRA) is first investigated for wireless capsule endoscope (WCE) application under the 5.8-GHz industrial, scientific, and medical (ISM) standard. The probe-fed hemispherical DRA (HDRA) is studied to match the shape of the spherical dome end, and the characteristic mode analysis (CMA) tool is applied to analyze the resonant modes of the proposed antenna to reveal the intrinsic behavior of the dielectric resonator. It is found that the quasi-isotropic radiation pattern can be achieved by combining HDRA's TE111sinφ mode which radiates like a magnetic dipole and a small ground plane's TM10 mode that radiates like an electric dipole. In order to reach the requirement of 5.8 GHz in ISM, a ceramic hemispherical dielectric resonator with dielectric constant of 21.984 is investigated. The radius of the hemisphere is set to 5.35 mm. In free space, the measurement results show that the proposed antenna achieves 3.25% bandwidth, 86% maximum efficiency and 7.2 dB gain deviation. The antenna is also measured in pork to approximate human body environment. The measurement results demonstrate that the antenna achieves 3.20% bandwidth, 8.15% maximum efficiency and 9.0 dB gain deviation. Accordingly, the proposed antenna is suitable for WCE application at 5.8 GHz ISM standard.
Citation
Beibei Xing, Yueyuan Zhang, Hui Zou, and Zhiwei Liu, "A Conformal Quasi-Isotropic Dielectric Resonator Antenna for Wireless Capsule Endoscope Application," Progress In Electromagnetics Research M, Vol. 99, 211-221, 2021.
doi:10.2528/PIERM20091901
References

1. Yun, S., K. Kim, and S. Nam, "Outer-wall loop antenna for ultrawideband capsule endoscope system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1135-1138, 2010.
doi:10.1109/LAWP.2010.2094996

2. Miah, M. S., A. N. Khan, C. Icheln, et al. "Antenna system design for improved wireless capsule endoscope links at 433 MHz," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2687-2699, 2018.
doi:10.1109/TAP.2019.2900389

3. Lee, S. H., J. Lee, Y. J. Yoon, S. Park, and S. Nam, "A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 6, 1734-1741, 2011.
doi:10.1109/TBME.2011.2112659

4. Li, Y., Y. X. Guo, and S. Xiao, "Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3738-3743, 2017.
doi:10.1109/TAP.2017.2705023

5. Duan, Z., L.-J. Xu, S. Gao, and W. Geyi, "Integrated design of wideband omnidirectional antenna and electronic components for wireless capsule endoscopy systems," IEEE Access, Vol. 6, 29626-29636, 2018.
doi:10.1109/ACCESS.2018.2840689

6. Cui, W., R. Liu, L. Wang, et al. "Design of wideband implantable antenna for wireless capsule endoscope system," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2706-2710, 2019.
doi:10.1109/LAWP.2019.2949630

7. Wang, J., M. Leach, E. G. Lim, et al. "An implantable and conformal antenna for wireless capsule endoscopy," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1153-1157, 2018.
doi:10.1109/LAWP.2018.2836392

8. Lei, W. and Y. X. Guo, "Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5706-5715, 2018.
doi:10.1109/TAP.2018.2862243

9. Shang, J. and Y. Yu, "An ultrawideband capsule antenna for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2548-2551, 2019.
doi:10.1109/LAWP.2019.2942842

10. Li, Y., Y. X. Guo, and S. Xiao, "Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3738-3743, 2017.
doi:10.1109/TAP.2017.2705023

11. Abedian, M., S. K. A. Rahim, and M. Khalily, "Two-segments compact dielectric resonator antenna for UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1533-1536, 2012.
doi:10.1109/LAWP.2012.2232639

12. Liu, S., D. Yang, Y. Chen, et al. "Broadband dual circularly polarized dielectric resonator antenna for ambient electromagnetic energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4961-4966, 2020.
doi:10.1109/TAP.2020.2968768

13. Zhou, Y. D., Y. C. Jiao, Z. B. Weng, et al. "A novel single-fed wide dual-band circularly polarized dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 930-933, 2015.

14. Pan, Y. M. and K. W. Leung, "Wideband omnidirectional circularly polarized dielectric resonator antenna with parasitic strips," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2992-2997, 2012.
doi:10.1109/TAP.2012.2194678

15. Lee, M. T., K. M. Luk, K. W. Leung, et al. "A small dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1485-1487, 2002.
doi:10.1109/TAP.2002.806539

16. Al-Alem, Y. and A. A. Kishk, "Wideband millimeter-wave dielectric resonator antenna with gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2711-2715, 2019.
doi:10.1109/LAWP.2019.2949947

17. Petosa, A. and S. Thirakoune, "Rectangular dielectric resonator antennas with enhanced gain," IEEE Transactions on Antennas & Propagation, Vol. 59, No. 4, 1385-1389, 2011.
doi:10.1109/TAP.2011.2109690

18. Mukherjee, B., P. Patel, and J. Mukherjee, "A review of the recent advances in dielectric resonator antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1095-1158, 2020.
doi:10.1080/09205071.2020.1744484

19. Mukherjee, B., P. Patel, and J. Mukherjee, "Hemispherical dielectric resonator antenna based on apollonian gasket of circles - A fractal approach," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 40-47, Jan. 2014, doi: 10.1109/TAP.2013.2287011.
doi:10.1109/TAP.2013.2287011

20. Mukherjee, B., P. Patel, and J. Mukherjee, "A novel cup-shaped inverted hemispherical dielectric resonator antenna for wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1240-1243, 2013.
doi:10.1109/LAWP.2013.2283213

21. Mukherjee, B., P. Patel, G. S. Reddy, and J. Mukherjee, "A novel half hemispherical dielectric resonator antenna with array of slots for wideband applications," Progress In Electromagnetics Research C, Vol. 36, 207-221, 2013.
doi:10.2528/PIERC12122002

22. Choudhary, D. K. and R. K. Chaudhary, "Compact filtering antenna using asymmetric CPW-fed based CRLH structure," AEU - International Journal of Electronics and Communications, Vol. 126, 2020.

23. Choudhary, D. K. and R. K. Chaudhary, "Vialess wideband bandpass filter using CRLH transmission line with semi-circular stub," II International Conference on Microwave & Photonics, ICMAP-2015, IEEE, 2016.

24. Pan, Y. M., K. W. Leung, and K. Lu, "Compact quasi-isotropic dielectric resonator antenna with small ground plane," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 577-585, 2014.
doi:10.1109/TAP.2013.2292082

25. Hu, P. F., Y. M. Pan, X. Y. Zhang, et al. "A compact quasi-isotropic dielectric resonator antenna with filtering response," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1294-1299, 2018.
doi:10.1109/TAP.2018.2883611

26. Liu, C., Y. X. Guo, and S. Xiao, "Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6027-6039, 2014.
doi:10.1109/TAP.2014.2364074

27. Su, Z., K. Klionovski, R. M. Bilal, and A. Shamim, "A dual bandadditively manufactured 3D antenna on package with near-isotropic radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3295-3305, Apr. 2018.
doi:10.1109/TAP.2018.2823729

28. Duan, Y.-X. Guo, M. Je, and D.-L. Kwong, "Design and in vitro test of a differentially fed dual-band implantable antenna operating at MICS and ISM bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2430-2439, May 2014.
doi:10.1109/TAP.2014.2309130

29. Mukherjee, B. and A. Raj, "Investigation of a hemispherical dielectric resonator antenna for enhanced bandwidth of operation," International Journal of Applied Electromagnetics & Mechanics, Vol. 41, No. 4, 457-466, 2013.
doi:10.3233/JAE-121636

30. Zhang, K., C. Liu, X. Liu, et al. "A conformal differentially fed antenna for ingestible capsule system," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1695-1703, 2018.
doi:10.1109/TAP.2018.2804673