Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-24

Design of an Inductive Spiral-Loop Loaded Unit Cell in a Mushroom-Shaped High Impedance Surface for Sub-GHz Applications

By Sung Cheol Hong, Woo Seok Kim, and Sung Il Park
Progress In Electromagnetics Research M, Vol. 100, 1-11, 2021
doi:10.2528/PIERM20091504

Abstract

A high impedance surface has far-reaching potential in wireless applications, but realization of the surface operating at sub-GHz ranges is challenging due to its size limits in practical applications. Here, we present a novel inductive technique based on multi-turn square spiral loops. The introduction of the spiral loops to a mushroom-shaped high impedance surface provides additional current path, thereby results in a dramatic increase in its total inductance at given dimensions, and therefore leads to a significant reduction in a resonant frequency of a high impedance plane. Electromagnetic simulation results reveal that a resonant frequency shifts downward 1 GHz at a given dimension, and they are in good agreement with results from an analytical model for the proposed structure. Experimental measurements suggest the feasibility of the proposed approach.

Citation


Sung Cheol Hong, Woo Seok Kim, and Sung Il Park, "Design of an Inductive Spiral-Loop Loaded Unit Cell in a Mushroom-Shaped High Impedance Surface for Sub-GHz Applications," Progress In Electromagnetics Research M, Vol. 100, 1-11, 2021.
doi:10.2528/PIERM20091504
http://jpier.org/PIERM/pier.php?paper=20091504

References


    1. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    2. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
    doi:10.1109/TAP.2003.817575

    3. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, 1999.
    doi:10.1109/22.798008

    4. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2011.
    doi:10.1109/TAP.2011.2167912

    5. Kim, I. K., H. Wang, S. J. Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 1665-1672, 2012.
    doi:10.1109/TVT.2012.2189254

    6. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.
    doi:10.1109/LAWP.2015.2389274

    7. Wu, T., J. Chen, and P.-F. Wu, "Multi-mode high-gain antenna array loaded with high impedance surface," IEEE Access, Vol. 8, 147070-147076, 2020.
    doi:10.1109/ACCESS.2020.3015758

    8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
    doi:10.2528/PIER12110902

    9. Zhang, Y., D. C. Castro, Y. Han, Y. Wu, H. Guo, Z. Weng, Y. Xue, J. Ausra, X. Wang, R. Li, G. Wu, A. V. Guardado, Y. Xie, Z. Xie, D. Ostojich, D. Peng, R. Sun, B. Wang, Y. Yu, J. P. Leshock, S. Qu, C.-J. Su, W. Shen, T. Hang, A. Banks, Y. Huang, J. Radulovic, P. Gutruf, M. R. Bruchas, and J. A. Rogers, "Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics," Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, No. 3, 21427-21437, 2019.
    doi:10.1073/pnas.1909850116

    10. Zhang, H., P. Gutruf, K. Meacham, M. C. Montana, X. Zhao, A. M. Chiarelli, A. V. Guardado, A. Norris, L. Lu, Q. Guo, C. Xu, Y. Wu, H. Zhao, X. Ning, W. Bai, I. Kandela, C. R. Haney, D. Chanda, R. W. Gereau, IV, and J. A. Rogers, "Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry," Science Advances, Vol. 5, No. 3, 2019.

    11. Kim, W. S., M. Jeong, S. Hong, B. Lim, and S.-I. Park, "Fully implantable low-power high frequency range optoelectronic devices for dual-channel modulation in the brain," Multidisciplinary Digital Publishing Institute Sensors, Vol. 20, 3639-3653, 2020.

    12. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 7, 1262-1265, 2001.
    doi:10.1109/22.932245

    13. Durgun, A. C., C. A. Balanis, C. R. Birtcher, H. Huang, and H. Yu, "High-impedance surfaces with periodically perforated ground planes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4510-4517, 2014.
    doi:10.1109/TAP.2014.2331703

    14. Gu, M., D. Vorobiev, W. S. Kim, H.-T. Chien, H.-M. Woo, S. C. Hong, and S. I. Park, "A novel approach using an inductive loading to lower the resonant frequency of a mushroom-shaped high impedance surface," Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020.
    doi:10.2528/PIERM19110607

    15. Bansal, A., B. C. Paul, and K. Roy, "An analytical fringe capacitance model for interconnects using conformal mapping," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 12, 2765-2774, 2006.
    doi:10.1109/TCAD.2006.882489

    16. Wheeler, H. A., "Simple inductance formulas for radio coils," Proceedings of the Institute of Radio Engineers, 1398-1400, 1928.

    17. Kovacs, P., "Design and optimization of electromagnetic band gap structures,", Doctoral thesis in Brno University of Technology, 2010.

    18. Zheng, S. F., Y. Z. Yin, H. L. Zheng, Z. Y. Liu, and A. F. Sun, "Convoluted and interdigitated hexagon loop unit cells for frequency selective surfaces," Electronics Letters, Vol. 47, No. 4, 233-235, 2011.
    doi:10.1049/el.2010.7407

    19. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 323-326, 2006.
    doi:10.1109/LAWP.2006.878900

    20. Anwar, R. S., Y. Wei, L. Mao, and H. Ning, "Miniaturised frequency selective surface based on fractal arrays with square slots for enhanced bandwidth," IET Microwaves, Antennas & Propagation, Vol. 13, No. 11, 1811-1819, 2019.
    doi:10.1049/iet-map.2018.5224

    21. Lazarus, N., C. D. Meyer, and S. S. Bedair, "Fractal inductors," IEEE Transactions on Magnetics, Vol. 50, No. 4, 2014.
    doi:10.1109/TMAG.2013.2290510

    22. Shoute, G. and D. W. Barlage, "Fractal loop inductors," IEEE Transactions on Magnetics, Vol. 51, No. 6, 2015.
    doi:10.1109/TMAG.2015.2388677

    23. Kaipa, C. S. R., A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, "Mushroom-type high-impedance surface with loaded vias: Homogenization modeland ultra-thin design," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1503-1506, 2011.
    doi:10.1109/LAWP.2011.2180694