Vol. 99
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-01
Liquid-Crystal Based, Beam-Steerable Quasi-Periodic Substrate Integrated Waveguide Leaky-Wave Antenna with Transverse Slots
By
Progress In Electromagnetics Research M, Vol. 99, 81-90, 2021
Abstract
In this paper, a substrate integrated waveguide (SIW) quasi-uniform leaky-wave antenna (LWA) is proposed for a dynamically steerable beam design at a single frequency through the use of a thin layer of nematic liquid crystal (LC) underneath the substrate. The orientation of the LC molecules, and therefore the effective dielectric properties of the LC cell, is controlled via an externally low-frequency, low-strength bias voltage. The radiation occurs through a series of closely placed transverse slots etched on the top plane of the SIW. This antenna was designed to operate based on the fundamental space harmonic (n=0) in the frequency range between 24.25 GHz and 29 GHz, which covers one of the future 5G frequency bands to be deployed in some parts of the world. This novel antenna design concept was verified numerically using a commercial software based on the Finite Element Method (FEM), and the results are presented and discussed herein.
Citation
Rodrigue B. Tchema, and Anastasis C. Polycarpou, "Liquid-Crystal Based, Beam-Steerable Quasi-Periodic Substrate Integrated Waveguide Leaky-Wave Antenna with Transverse Slots," Progress In Electromagnetics Research M, Vol. 99, 81-90, 2021.
doi:10.2528/PIERM20091403
References

1. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, Chap. 7, C. A. Balanis, ed., Wiley, New Jersey, NJ, USA, 2008.

2. Oliner, A. A. and D. R. Jackson, "Leaky-wave antennas," Antenna Engineering Handbook, 4th Edition, Chap. 11, J. L. Volakis, ed., McGraw-Hill, NY, USA, 2007.

3. Che, W., D. Wang, K. Deng, and Y. L. Chow, "Leakage and ohmic losses investigation in substrate-integrated waveguide," Radio Science, Vol. 42, No. 5, 1-8, Oct. 2007.

4. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 340-347, 2010.
doi:10.1109/TAP.2009.2026593

5. Monticone, F. and A. Alu, "Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies," Proceedings of the IEEE, Vol. 103, No. 5, 793-821, May 2015.
doi:10.1109/JPROC.2015.2399419

6. Liu, J., D. R. Jackson, and Y. Long, "Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 20-29, Jan. 2012.
doi:10.1109/TAP.2011.2167910

7. Oseen, C. W., "The theory of liquid crystals," Trans. Faraday Soc., Vol. 29, 883-898, 1933.
doi:10.1039/tf9332900883

8. Frank, F. C., "On the theory of liquid crystals," Discussions of the Faraday Soc., Vol. 25, 19-28, 1958.
doi:10.1039/df9582500019

9. Kuki, T., H. Fujikake, H. Kamoda, and T. Nomoto, "Microwave variable delay line using a membrane impregnated with liquid crystal," 2002 IEEE MTT-S International Microwave Symposium Digest, 363-366, Seattle, WA, USA, 2002.

10. Kuki, T., H. Fujikake, and T. Nomoto, "Microwave variable delay line using dual frequency switching-mode," IEEE Trans. Microw. Theory Tech., Vol. 50, 2604-2609, Nov. 2002.

11. Dolphi, D., M. Labeyrie, P. Joffre, and J. P. Huignard, "Liquid crystal microwave phase shifter," Electronic Lett., Vol. 29, No. 10, 926-928, May 1993.
doi:10.1049/el:19930618

12. Weil, C., S. Muller, P. Scheele, Y. Kryvoshapka, G. Lussem, P. Best, and R. Jakoby, "Ferroelectric-and liquid crystal-tunable microwave phase shifters," 3rd Europ. Micr. Conf., 1431-1434, 2003.

13. Guo, Z., Y. Liu, T. Yang, Lei, D. Jiang, B. Gan, and W. Cao, "Tunable substrate integrated waveguide bandpass filter using liquid crystal material," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 763-765, 2016.
doi:10.1109/ISAPE.2016.7834097

14. Ding, C., F. Meng, H. Mu, J. Qiao, C. Zhao, Q. Yuan, and Q. Wu, "Design of a filtering tunable liquid crystal phase shifter based on coplanar waveguide and split-ring resonators," Liquid Crystals, Vol. 46, No. 15, 2127-2133, May 2019.
doi:10.1080/02678292.2019.1613691

15. Martin, N., P. Laurent, C. Person, P. Gelin, and F. Hubert, "Patch antenna adjustable in frequency using liquid crystal," IEEE 33rd Eur. Microw. Conf., 699-702, Munich, Germany, 2003.
doi:10.1109/EUMC.2003.177573

16. Bose, R. and A. Sinha, "Tunable patch antenna using liquid crystal substrate," 2008 IEEE Radar Conference, 1-6, Rome, Italy, 2008.

17. Shetta, A. and S. F. Mahmouh, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 40-42, 2008.
doi:10.1109/LAWP.2008.915796

18. Missaoui, S. and M. Kaddour, "Tunable microstrip patch antenna based on liquid crystals," 2016 XXIst International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 88-91, Tbilisi, 2016.

19. Polycarpou, A. C., M. A. Christou, and C. N. Papanicolaou, "Tunable patch antenna printed on a biased nematic liquid crystal cell," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 4980-4987, Oct. 2014.
doi:10.1109/TAP.2014.2344099

20. Prasetiadi, A. E., O. H. Karabey, et al. "Constinuously tunable substrate integrated waveguide band pass filter in liquid crystal technology with magnetic biasing," Electronic Lett., Vol. 51, No. 20, 1584-1585, 2015.
doi:10.1049/el.2015.2494

21. Li, X., D. Jiang, and H. Yu, "Electrical biasing substrate integrated waveguide tunable band pass filter with liquid crystal technology," Optik, Vol. 14, 718-723, 2017.
doi:10.1016/j.ijleo.2017.05.005

22. Fu, Z., D. Jiong, and Y. Liu, "Miniaturized pattern reconfigurable hmsiw leaky-wave antenna based on liquid crystal tuning technology in millimeter wave band," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, 2019.

23. Tchema, R. B. and A. C. Polycarpou, "Quasi-periodic leaky-wave antenna based on substrate integrated waveguide and liquid crystal technologies," 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, 2020.

24. Bozzi, M., M. Pasian, L. Perregrini, and K.Wu, "On the losses in substrate integrated waveguides," 37th Eur. Microw. Conf., 384-387, 2007.

25. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristic of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, Sept. 2002.
doi:10.1109/LMWC.2002.803188

26. Deslandes, W. and K. Wu, "Substrate integrated waveguide leaky-wave antenna: Concept and design considerations," Proc. Asia-Pacific Microwave Conf. (APMC), Suzhou, China, 2005.

27. Collings, P. J. and M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, 1st Ed., Taylor and Francis, CRC Press, London, 1997.
doi:10.4324/9780203211199

28. Khoo, I., Liquid Crystals, 2nd Ed., Wiley, Hoboken, NJ, USA, 2007.
doi:10.1002/0470084030