Vol. 98
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-04
Wide Band Low RCS Metasurface and Its Application on Patch Antenna
By
Progress In Electromagnetics Research M, Vol. 98, 77-87, 2020
Abstract
A new metasurface (MS) structure for wideband low radar cross section (RCS) and its performance as an antenna has been analyzed and proposed in this paper. The MS has been designed with two different AMC unit cells, and the novel AMCs scatter the incident waves diffusively. The parameters and dimensions of the AMCs are optimized to get the best performance of the antenna. Furthermore, the unit cell structure of metasurface is designed and positioned to improve the directivity of the antenna. The reflected electromagnetic waves scatter in a manner of 180⁰ out of phase with the incident waves, and the antenna's scattering and radiation performance has also been examined. Full-wave simulations and measurements confirm that the proposed antenna achieves 10 dB RCS reduction over a wide bandwidth of 3-12 GHz (61.2%). A monostatic peak RCS reduction of 45 dB is accomplished at 5 GHz, 7 GHz, and 11.5 GHz. Besides, the radiation characteristics of the antenna are appropriate in the boresight direction, and the antenna exhibits good performance in $E$-, $H$-planes and ensures adequate directivity.
Citation
Kavitha Muthukrishnan, and Venkateswaran Narasimhan, "Wide Band Low RCS Metasurface and Its Application on Patch Antenna," Progress In Electromagnetics Research M, Vol. 98, 77-87, 2020.
doi:10.2528/PIERM20091001
References

1. Zhu, X., J. Gao, B. Zhu, J. Wang, Y. Tang, H. Yu, and S. Wang, "A low-RCS, wideband and circularly polarized metasurface antenna," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-3, IEEE, May 2018.

2. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 326-331, 2015.
doi:10.1109/TAP.2015.2497352

3. Knott, E. F., Radar Cross Section Measurements, Springer Science & Business Media, 2012.

4. Singh, H. and R. M. Jha, Active Radar Cross-section Reduction, Cambridge University Press, 2015.
doi:10.1017/CBO9781316136171

5. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002

6. Alibakhshi-Kenari, M., B. S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M. O. Akinsolu, C. H. See, and T. A. Denidni, "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698

7. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, and E. Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

8. Alibakhshi-Kenari, M., "Design and modeling of new UWB metamaterial planar cavity antennas with shrinking of the physical size for modern transceivers," International Journal of Antennas and Propagation, 2013.

9. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A novel 0.3–0.31 THz GaAs-based transceiver with on-chip slotted metamaterial antenna based on SIW technology," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 69-71, IEEE, Dec. 2019.
doi:10.1109/APMC46564.2019.9038371

10. Alibakhshi-Kenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas," IEEE Access, Vol. 7, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950

11. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 12, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003

12. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017

13. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, No. 6, 642, 2019.
doi:10.3390/electronics8060642

14. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, Nov. 2009.

15. Pazokian, M., N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1382-1385, Aug. 2018.
doi:10.1109/LAWP.2018.2846613

16. Jang, H. K., W. J. Lee, and C. G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, No. 1, 7-15, Dec. 2010.

17. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, Mar. 2012.
doi:10.1109/TAP.2012.2189701

18. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

19. Liu, Z., Y. Liu, and S. Gong, "Gain enhanced circularly polarized antenna with RCS reduction based on metasurface," IEEE Access, Vol. 6, 46856-46862, 2018.
doi:10.1109/ACCESS.2018.2865533

20. Tan, Y., N. Yuan, Y. Yang, and Y. Fu, "Improved RCS and efficient waveguide slot antenna," Electron. Lett., Vol. 47, No. 10, 582-583, May 2011.
doi:10.1049/el.2011.0842

21. Ravi, P. R., V. A. Libimol, K. K. Sreelatha, T. A. Nisamol, and C. K. Aanandan, "Low RCS microstrip patch antenna using complementary split-ring resonators," IJIRSET, Vol. 7, No. 6, 40-47, Mar. 2017.

22. Kong, X., J. Xu, J. J. Mo, and S. Liu, "Broadband and conformal metamaterial absorber," Frontiers of Optoelectronics, Vol. 10, No. 2, 124-131, Apr. 2017.
doi:10.1007/s12200-017-0682-z

23. Jia, Y., Y. Liu, S.-X. Gong, T. Hong, and D. Yu, "Printed UWB end-fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
doi:10.2528/PIERL12112011

24. Yao, P., B. Zhang, and J. Duan, "A broadband artificial magnetic conductor reflecting screen and application in microstrip antenna for radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 405-409, Mar. 2018.
doi:10.1109/LAWP.2018.2791662

25. Shater, A. and D. Zarifi, "Radar cross section reduction of microstrip antenna using dual-band metamaterial absorber," Applied Computational Electromagnetics Society Journal, Vol. 32, No. 2, 135-140, Feb. 2017.

26. Zhao, Y., X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, "Broadband low-RCS meta surface and its application on the antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2954-2962, Jul. 2016.
doi:10.1109/TAP.2016.2562665

27. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "The novel design of ultra-broadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017.
doi:10.1109/TAP.2017.2734069

28. Tan, Y., J. Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, 2019.
doi:10.1109/TAP.2019.2920355

29. Nguyen-Trong, N., H. H. Tran, T. K. Nguyen, and A. M. Abbosh, "A compact wideband circular polarized Fabry-Perot antenna using resonance structure of thin dielectric slabs," IEEE Access, Vol. 6, 56333-56339, 2018.
doi:10.1109/ACCESS.2018.2872571

30. Liu, Y., H. Wang, Y. Jia, and S.-X. Gong, "Broadband radar cross-section reduction for microstrip patch antenna based on hybrid AMC structures," Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014.

31. Jang, H. K., W. J. Lee, and C. G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Mater. Struct., Vol. 20, 1-8, Dec. 2010.

32. Yang, H.-H., X.-Y. Cao, Q.-R. Zheng, J.-J. Ma, and W.-Q. Li, "Broadband RCS reduction of microstrip patch antenna using bandstop frequency selective surface," Radio Engineering, Vol. 22, No. 4, 1275-1280, Dec. 2013.

33. Turpin, J. P., P. E. Sieber, and D. H. Werner, "Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1456-1459, Nov. 2013.