Vol. 98
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-15
Low Observable Conformal Patch Array with Hybrid HIS-Based Ground Plane
By
Progress In Electromagnetics Research M, Vol. 98, 123-135, 2020
Abstract
Conformal low profile antenna array has been widely used towards reduced radar cross section and good radiation characteristics. Being conformal, it has a number of advantages over planar antenna structure. This paper presents the radiation and scattering characteristics of a planar and conformal patch array with conventional and hybrid HIS-based ground plane on a low loss dielectric substrate. The use of a hybrid HIS layer instead of conventional metallic ground plane contributes to achieving wideband RCS reduction over 8 GHz-50 GHz, without degrading the radiation performance in terms of antenna gain, return loss and VSWR. The measurement results of the fabricated antennas are found in good agreement with the simulated ones. The radiation mode RCS of the conformal patch array has been analytically estimated and shown to be controlled in the operating frequency range. Such a low profile low RCS antenna array can be used as a subarray of phased arrays in fire control radars.
Citation
Avinash Singh, and Hema Singh, "Low Observable Conformal Patch Array with Hybrid HIS-Based Ground Plane," Progress In Electromagnetics Research M, Vol. 98, 123-135, 2020.
doi:10.2528/PIERM20073101
References

1. Balanis, C. A., Antenna Theory, Analysis and Design, 1117, New Jersey, John Wiley & Sons, ISBN: 0-471-66782-X, 2005.

2. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons, Hoboken, NJ, USA, 2006.
doi:10.1002/047178012X

3. Thors, B. and L. Josefsson, "Radiation and scattering tradeoff design for conformal arrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 5, 1069-1076, May 2003.
doi:10.1109/TAP.2003.811489

4. Rawat, H. S., H. Singh, and R. M. Jha, "Radar cross section of a parallel-fed cylindrical array of dipoles," Electromagnetics, Vol. 36, No. 5, 287-304, 2016.
doi:10.1080/02726343.2016.1187108

5. Turpin, J. P., P. E. Sieber, and D. H. Werner, "Absorbing FSS ground plane for reduced radar cross section of conformal antennas," IEEE Antennas and Propagation Society International Symposium (APSURSI), 464-465, 2013.
doi:10.1109/APS.2013.6710893

6. Ruilin, L., N. Zhenyi, and L. Rongsheng, "A novel method for the RCS reduction of conformal microstrip antenna," Proceedings of Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 516-519, July 26–30, 2011.

7. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.1109/TAP.2012.2189701

8. Cong, L.-L., X.-Y. Cao, W. Li, and Y. Zhao, "A new design method for patch antenna with low RCS and high gain performance," Progress In Electromagnetics Research Letters, Vol. 59, 77-84, 2016.
doi:10.2528/PIERL15012801

9. Li, J., T. A. Khan, J. Chen, M. U. Raza, and A. Zhang, "Design of low RCS circularly polarized patch antenna array using metasurface for CNSS adaptive antenna applications," Materials, Vol. 12, 14, 2019.

10. Ramkumar, M. A., C. Sudhendra, and K. Rao, "A novel low RCS microstrip antenna array using thin and wideband radar absorbing structure based on embedded passives resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
doi:10.2528/PIERC16080506

11. Liu, Y., Y. Hao, Y. Jia, and S.-X. Gong, "A low RCS dual-frequency microstrip antenna with complementary split-ring resonators," Progress In Electromagnetics Research, Vol. 146, 125-132, 2014.
doi:10.2528/PIER14031703

12. Singh, A., D. K. Sasidharan, and H. Singh, "EM design of low RCS proximity coupled patch array," ICT Analysis and Applications, Chapter 3, 21-30, S. Fong, N. Dey, and A. Joshi (eds.), Springer Nature Singapore Pte Ltd., 570, (978-981-15-0629-1), Singapore, 2019.

13. Sasidharan, D. K., A. Singh, and H. Singh, "RCS reduction in microstrip patch array with hybrid AMC-based ground plane," Antenna Test & Measurement Society of India Conference (ATMS 2019), 4, Chennai, July 25–27, 2019.

14. Singh, A., D. K. Sasidharan, and H. Singh, "Analytical estimation of radiation mode radar cross section (RCS) of phased arrays," IEEE Transactions on Vehicular Technology, Vol. 69, No. 6, 6415-6421, June 2020.
doi:10.1109/TVT.2020.2986007

15. Wincza, K. and S. Gruszczynski, "Influence of curvature radius on radiation patterns in multibeam conformal antennas," Proceedings of 2006 European Microwave Conference, 4, Manchester, UK, Sept. 10–15, 2006.

16. Haghzadeh, M., H. Jaradat, C. Armiento, and A. Akyurtlu, "Design and simulation of fully printable conformal antennas with BST/Polymer composite based phase shifters," Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016.
doi:10.2528/PIERC15091504