Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-15

Hybrid Antenna Array for 4G/5G Smartphone Applications

By Ming Yang, Yufa Sun, and Jinzhi Zhou
Progress In Electromagnetics Research M, Vol. 96, 109-118, 2020
doi:10.2528/PIERM20071202

Abstract

In this paper, a hybrid antenna array for 4G/5G smartphone applications is presented. The hybrid antenna system is composed of one array of two antenna elements for 4G application and another array of six antenna elements for 5G application. By loading PIN diodes and changing the on/off state of the PIN switch, then the resonance point will shift. The 2-antenna array broadens the bandwidth of 4G frequency band and is capable of covering GSM850/900/DCS1800/PCS1900/UMTS2100 and LTE2300/2500 operating bands. A U-shape monopole strip and an S-shape slot coupling technologies are also introduced, the 6-antenna array improves the impedance matching for the proposed 5G antenna array, and is capable of covering the 5G (3300 3600 MHz and 4800 5000 MHz), which can meet the demand of 5G application. Spatial and polarization diversity techniques are implemented on these antenna elements so that high isolation can be achieved. This hybrid antenna array is fabricated, and typically experimental results such as S11, isolation, radiation pattern, efficiency, and channel capacity are presented. The measured results are in good agreement with the simulated ones.

Citation


Ming Yang, Yufa Sun, and Jinzhi Zhou, "Hybrid Antenna Array for 4G/5G Smartphone Applications," Progress In Electromagnetics Research M, Vol. 96, 109-118, 2020.
doi:10.2528/PIERM20071202
http://jpier.org/PIERM/pier.php?paper=20071202

References


    1. Bang, J. and J. Choi, "A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1118-1122, Jun. 2018.
    doi:10.1109/LAWP.2018.2836196

    2. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, Dec. 2017.
    doi:10.1109/TAP.2017.2671028

    3. Guo, J. L., et al., "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7412-7417, Dec. 2018.
    doi:10.1109/TAP.2018.2872130

    4. Choi, J., et al., "Four-element reconfigurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 99-107, Jan. 2019.
    doi:10.1109/TAP.2018.2877299

    5. Li, M. Y., et al., "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 5, 6160-6170, 2017.

    6. Li, Y. X., et al., "Multi-band 10-antenna array for sub-6 GHz MIMO applications in 5G smartphones," IEEE Access, Vol. 6, 28014-28053, 2018.

    7. Sun, L. B., Y. Li, Z. J. Zhang, and Z. H. Feng, "Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2494-2503, Apr. 2020.
    doi:10.1109/TAP.2019.2948707

    8. Rahmi, B. I. R. and K. L. Wong, "Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 × 2 LTE LB and 4 × 4 LTE M/HB MIMO operations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5004-5012, Oct. 2018.

    9. Wang, S. and Z. W. Du, "Decoupled dual-antenna system using crossed neutralization lines for LTE/WWAN smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 523-526, 2015.
    doi:10.1109/LAWP.2014.2371020

    10. Dong, J., X. Yu, and L. Deng, "A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1528-1532, 2017.
    doi:10.1109/LAWP.2017.2647807

    11. Wang, S. and Z. W. Du, "A dual-antenna system for LTE/WWAN/WLAN/WiMAX smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1443-1446, 2015.
    doi:10.1109/LAWP.2015.2411253

    12. Ban, Y. L., et al., "Decoupled closely spaced heptaband antenna array for WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 31-34, 2014.

    13. Wong, K. L., C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1765-1778, 2017.
    doi:10.1109/TAP.2017.2670534

    14. Li, M. Y., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, Sep. 2016.
    doi:10.1109/TAP.2016.2583501

    15. Li, M. Y., et al., "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone," IET Microwaves Antennas and Propagation, Vol. 11, No. 12, 1810-1816, 2017.
    doi:10.1049/iet-map.2017.0230

    16. Wong, K. L. and J. Y. Lu, "3.6-GHz 10-antenna array for MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1699-1704, 2015.
    doi:10.1002/mop.29181

    17. Jiang, W., B. Liu, Y. Q. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
    doi:10.1109/ACCESS.2019.2904647

    18. Yuan, X. T., et al., "Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application," IEEE Access, Vol. 8, 56281-56289, 2020.
    doi:10.1109/ACCESS.2020.2982036

    19. Ban, Y. L., et al., "Reconfigurable narrow-frame antenna for LTE/WWAN metal-rimmed smartphone applications," IET Microwaves Antennas and Propagation, Vol. 10, No. 10, 1092-1100, 2016.
    doi:10.1049/iet-map.2015.0610