Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-07

Adaptive Antijamming Based on Space-Time 2-D Sparse Array for GNSS Receivers

By Ruiyan Du, Fulai Liu, Kai Tang, and Hui Song
Progress In Electromagnetics Research M, Vol. 96, 89-97, 2020
doi:10.2528/PIERM20070302

Abstract

Space-time adaptive antijamming problem has received significant attention recently for global navigation satellite system (GNSS). It can jointly utilize spatial filters and temporal filters to suppress interference signals. However, most of the works on space-time antijamming problem presented in the literature require a space-time two-dimension (2-D) array with multiple antennas and delay taps. In this paper, an effective adaptive antijamming method based on space-time a 2-D sparse array is proposed. The maximum array gain is utilized to construct a space-time 2-D sparse array. The space-time antijamming weight vector is given by minimizing the 2-D sparse array output power. Compared with the previous works, the presented method can have better antijamming performance than a space-time 2-D uniform array. Simulation results verify the effectiveness and feasibility of the proposed method.

Citation


Ruiyan Du, Fulai Liu, Kai Tang, and Hui Song, "Adaptive Antijamming Based on Space-Time 2-D Sparse Array for GNSS Receivers," Progress In Electromagnetics Research M, Vol. 96, 89-97, 2020.
doi:10.2528/PIERM20070302
http://jpier.org/PIERM/pier.php?paper=20070302

References


    1. Souden, M., J. Benesty, and S. Affes, "A study of the LCMV and MVDR noise reduction filters," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4925-4935, 2010.
    doi:10.1109/TSP.2010.2051803

    2. Huang, Y. W., M. K. Zhou, and S. A. Vorobyov, "New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation," IEEE Transactions on Signal Processing, Vol. 67, No. 14, 3624-3638, 2019.
    doi:10.1109/TSP.2019.2918997

    3. Saeed, M. and K. Osman, "Adaptive beamforming based on theoretical interference-plus-noise covariance and direction-of-arrival estimation," IET Signal Processing, Vol. 12, No. 10, 819-825, 2018.

    4. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
    doi:10.2528/PIERC12012304

    5. Chen, F. Q., J. W. Nie, B. Y. Li, and F. X. Wang, "Distortionless space-time adaptive processor for global navigation satellite system receiver," Electronics Letters, Vol. 51, No. 25, 2138-2139, 2015.
    doi:10.1049/el.2015.2832

    6. Lu, Z. K., J. W. Nie, F. Q. Chen, H. M. Chen, and G. Ou, "Adaptive time taps of STAP under channel mismatch for GNSS antenna arrays," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 11, 2813-2824, 2017.
    doi:10.1109/TIM.2017.2728420

    7. Saeed, D., J. Ali, B. Ali, and L. Grard, "GNSS space-time interference mitigation and attitude determination in the presence of interference signals," Sensors, Vol. 15, No. 6, 12180-12204, 2015.
    doi:10.3390/s150612180

    8. Dai, X. Z., J. W. Nie, F. Q. Chen, and G. Ou, "Distortionless space-time adaptive processor based on MVDR beamformer for GNSS receiver," IET Radar Sonar & Navigation, Vol. 11, No. 10, 1488-1494, 2017.
    doi:10.1049/iet-rsn.2017.0168

    9. Liu, F., R. Du, and X. Bai, "A virtual space-time adaptive beamforming method for space-time antijamming," Progress In Electromagnetics Research M, Vol. 58, 183-191, 2017.
    doi:10.2528/PIERM17050304

    10. Xu, J. W., G. S. Liao, S. Q. Zhu, and L. Huang, "Response vector constrained robust LCMV beamforming based on semidefinite programming," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5720-5732, 2015.
    doi:10.1109/TSP.2015.2460221

    11. Zheng, Z., W. Q. Wang, Y. Y. Kong, and Y. D. Zhang, "MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect," IEEE Transactions on Signal Processing, Vol. 67, No. 7, 1728-1741, 2019.
    doi:10.1109/TSP.2019.2897954

    12. Muran, G., Y. D. Zhang, and T. Chen, "DOA estimation using compressed sparse array," IEEE Transactions on Signal Processing, Vol. 66, No. 15, 4133-4146, 2018.
    doi:10.1109/TSP.2018.2847645

    13. Hu, B., X. C. Wu, X. Zhang, Q. Yang, and W. B. Deng, "Adaptive beamforming for sparse array based on semi-definite programming," IEEE Access, Vol. 6, 64525-64532, 2018.
    doi:10.1109/ACCESS.2018.2878153

    14. Hawes, M. B. and W. Liu, "Sparse array design for wideband beamforming with reduced complexity in tapped delay-lines," IEEE/ACM Transactions on Audio Speech and Language Processing, Vol. 22, No. 88, 1236-1247, 2014.
    doi:10.1109/TASLP.2014.2327298

    15. Amin, M. G., X. R. Wang, Y. D. Zhang, and F. Ahmad, "Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS," Proceedings of the IEEE, Vol. 104, No. 6, 1302-1317, 2016.
    doi:10.1109/JPROC.2016.2531582

    16. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
    doi:10.2528/PIERC18012004

    17. Wang, X. R., M. Amin, and X. Cao, "Analysis and design of optimum sparse array configurations for adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 66, No. 2, 340-351, 2017.
    doi:10.1109/TSP.2017.2760279

    18. Wang, X. R., M. Amin, and X. H. Wang, "Robust sparse array design for adaptive beamforming against DOA mismatch," Signal Processing, Vol. 146, 41-49, 2018.
    doi:10.1016/j.sigpro.2017.12.018

    19. Meyer, C., "Matrix analysis and applied linear algebra," Society for Industrial and Applied Mathematics, 2000.

    20. Horst, R. and P. M. Pardalos, Introduction to Global Optimization, Springer-Verlag New York, Inc., 2002.

    21. Fazel, M., H. Hindi, and S. P. Boyd, "Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices," American Control Conference, Vol. 3, 2156-2162, 2003.

    22. Grant, M., CVX: Matlab software for disciplined convex programming, Version 1.21, 2008.