Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-24
Application of Stub-Loaded Step-Impedance Resonator for Quint-Band Bandpass Filter Design
By
Progress In Electromagnetics Research M, Vol. 96, 169-179, 2020
Abstract
Stub-loaded step-impedance resonator (SLSIR) is a multi-mode resonator and can be applied to implement multi-band or wideband filters. In this paper, odd- and even mode impedance analysis is used to resonant properties of the SLSIR. Only two SLSIRs are applied to design a quint-band bandpass filter (BPF). To find the required five resonant modes, the frequency ratios of the high order modes to the fundamental mode of the SLSIR are calculated depending on the impedance ratio and the length ratio of the SLSIR. Several coupling types of the SLSIRs are considered first to have enough energy for all the five passbands. When forming the quint-band, a pair of the SLSIR are coupled electrically and connected with 0o feeding input/output structure. The center frequencies are designed at 1.38 GHz, 2.58 GHz, 3.69 GHz, 5.36 GHz, and 5.8 GHz, corresponding to the different communication applications. The filter is designed, fabricated, and measured. Simulated and experimental results are in agreement, verifying the design concept.
Citation
Liqin Liu, Min-Hang Weng, Yabin Weng, Chin-Yi Tsai, and Ru-Yuan Yang, "Application of Stub-Loaded Step-Impedance Resonator for Quint-Band Bandpass Filter Design," Progress In Electromagnetics Research M, Vol. 96, 169-179, 2020.
doi:10.2528/PIERM20062903
References

1. Luo, S., L. Zhu, and S. Sun, "Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 5, 1222-1229, May 2011.
doi:10.1109/TMTT.2011.2123106

2. Chen, W. Y., S. J. Chang, M. H. Weng, Y. H. Su, and H. Kuan, "Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, WiMAX and WLAN applications," Microwave Opt. Tech. Lett., Vol. 53, No. 7, 1573-1576, Jul. 2011.
doi:10.1002/mop.26037

3. Chen, W. Y., M. H. Weng, and S. J. Chang, "A new tri-band bandpass filter based on stub-loaded stepped impedance resonator," IEEE Microw. Wireless Compon. Lett., Vol. 22, 179-181, Apr. 2012.
doi:10.1109/LMWC.2012.2187884

4. Chen, C. F., T. Y. Huang, and R. B. Wu, "Design of dual- and triple-passband filters using alternately cascaded multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3550-3558, Sep. 2006.
doi:10.1109/TMTT.2006.880653

5. Hsu, C. I. G., C. H. Lee, and Y. H. Hsieh, "Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 19-21, Jan. 2008.
doi:10.1109/LMWC.2007.911976

6. Chen, F. C. and Q. X. Chu, "Design of compact quad-band bandpass filters using assembled resonators," Microwave Opt. Tech. Lett., Vol. 53, No. 6, 1305-1308, Jun. 2011.
doi:10.1002/mop.25993

7. Hsu, K. W., W. C. Hung, and W. H. Tu, "Compact quint-band microstrip bandpass filter using double-layered substrate," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 7, No. 6, 1041-1044, Jun. 2013.

8. Chen, C. F., "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped- impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 7, 357-359, Jul. 2012.
doi:10.1109/LMWC.2012.2202894

9. Chen, L. and F. Wei, "Compact quad-and quint-band BPFs based on multimode stub loaded resonators," Microwave Opt. Tech. Lett., Vol. 57, No. 12, 2837-2841, Dec. 2015.
doi:10.1002/mop.29438

10. Xu, J., W. Wu, and G. Wei, "Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 3909-3920, Dec. 2015.
doi:10.1109/TMTT.2015.2488643

11. Zhu, C. M., J. Xu, W. Kang, and W. Wu, "Compact QB-BPF based on single PMR," Electronics Lett., Vol. 52, No. 17, 1463-1465, 2016.
doi:10.1049/el.2016.2202

12. Ai, J., Y. Zhang, K. D. Xu, D. Li, and Y. Fan, "Miniaturized quint-band bandpass filter based on multi-mode resonator and λ/4 resonators with mixed electric and magnetic coupling," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 5, 343-345, May 2016.
doi:10.1109/LMWC.2016.2549643

13. Zhou, K., C. X. Zhou, H. W. Xie, and W. Wu, "Synthesis design of SIW multiband bandpass filters based on dual-mode resonances and split-type dual- and triple-band responses," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 1, 151-161, Jan. 2019.
doi:10.1109/TMTT.2018.2874250

14. Hong, J. S., Microstrip Filters for RF/Microwave Applications, 2nd Ed., Wiley, New York (NY), 2011.
doi:10.1002/9780470937297

15. IE3D Simulator; Zeland Software, Inc., CA, USA, 2002.

16. Tsai, C. M., S. Y. Lee, and C. C. Tsai, "Performance of a planar filter using a 0 feed structure," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2362-2367, Nov. 2002.
doi:10.1109/TMTT.2002.803421