Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-05

Design of Circular Polarized Antenna Using Gammadion Chiral Metamaterial as Linear-to-Circular Polarization Transformer

By Preet Kaur and Pravin R. Prajapati
Progress In Electromagnetics Research M, Vol. 96, 69-78, 2020
doi:10.2528/PIERM20061806

Abstract

In this paper, the application of gammadion chiral metamaterial for converting linearly polarized waves to circularly polarized waves is presented and using this a circular polarized antenna for wireless application is proposed. First of all, a traditional rectangular microstrip patch antenna has been designed at resonance frequency of 5.15 GHz, which gives linear polarization. The linearly polarized waves are allowed to feed gammadion chiral metamaterial, which is placed at a height of 33 mm above the reference antenna. The gammadion chiral metamaterial produces two special effects that are responsible for polarization rotation: circular dichroism and optical activity. As a result of these effects, the necessary conditions for circularly polarized radiation are fulfilled, and antenna is converted to the circularly polarized antenna. This method gets rid of designing of complicated feeding structure that is necessary for circular polarization. The role of gammadion chiral metamaterial to convert linear polarization to circular polarization has been described. The antenna is fabricated, and the measurement of return loss, axial ratio, etc. is also carried out. Simulation and measurement results agree with each other.

Citation


Preet Kaur and Pravin R. Prajapati, "Design of Circular Polarized Antenna Using Gammadion Chiral Metamaterial as Linear-to-Circular Polarization Transformer," Progress In Electromagnetics Research M, Vol. 96, 69-78, 2020.
doi:10.2528/PIERM20061806
http://jpier.org/PIERM/pier.php?paper=20061806

References


    1. Gao, S., Q. Luo, and F. Zhu, Circular Polarized Antenna, Wiley Publication, UK, 2014.
    doi:10.1002/9781118790526

    2. Caso, R., A. Michel, M. Rodriguez-Pino, and P. Nepa, "Dual-band UHF-RFID/WLAN circularly polarized antenna for portable RFID readers," IEEE Trans. on Antennas and Propag., Vol. 62, 2822-2826, 2014.
    doi:10.1109/TAP.2014.2303971

    3. Yu, D., S. Gong, Y. Wan, and W. Chen, "Omnidirectional dual-band dual circularly polarized microstrip antenna using TM01 and TM02 modes," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 1104-1107, 2014.
    doi:10.1109/LAWP.2014.2328020

    4. Oraizi, H. and S. Hedayati, "Miniaturization of microstrip antennas by the novel application of the giuseppe peano fractal geometries," IEEE Trans. on Antennas and Propag., Vol. 60, 3559-3567, 2012.
    doi:10.1109/TAP.2012.2201070

    5. Wu, J. and K. Sarabandi, "Compact omnidirectional circularly polarized antenna," IEEE Trans. on Antennas and Propag., Vol. 65, 1550-1557, 2017.
    doi:10.1109/TAP.2017.2669959

    6. Zheng, G. and B. Sun, "High gain normal mode omnidirectional circularly polarized antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 1104-1108, 2018.
    doi:10.1109/LAWP.2018.2834477

    7. Fartookzadeh, M. and S. H. Mohseni Armaki, "Circular feeding network for circular polarisation reconfigurable antennas," Electron. Lett., Vol. 55, 677-679, 2019.
    doi:10.1049/el.2019.0920

    8. Lin, Y. F., H. M. Chen, C. H. Chen, and C. H. Lee, "Compact shorted inverted L antenna with circular polarisation for RFID handheld reader," Electro. Lett., Vol. 49, 442-449, 2013.
    doi:10.1049/el.2012.4296

    9. Liu, Q., Y. Liu, Y. Wu, M. Su, and J. Shen, "Compact wideband circularly polarized patch antenna for CNSS applications," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1280-1283, 2013.
    doi:10.1109/LAWP.2013.2283218

    10. Lai, H. W., K. M. Mak, and K. F. Chan, "Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna," Progress In Electromagnetics Research, Vol. 144, 1-9, 2014.
    doi:10.2528/PIER13101803

    11. Bakir, M., M. Karaaslan, O. Akgol, and C. Sabah, "Multifunctional metamaterial sensor applications based on chiral nihility," Opt. Quant. Electron., Vol. 49, 346-363, 2017.
    doi:10.1007/s11082-017-1183-4

    12. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave," J. Phys. D: Appl. Phys., Vol. 53, 2020.

    13. Cheng, Y., J. Fan, H. Luo, and F. Chen, "Dual band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615-7621, 2020.
    doi:10.1109/ACCESS.2019.2962299

    14. Cheng, Y., H. Luo, F. Chen, X. Mao, and R. Gong, "Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves," OSA Continuum, Vol. 2, 2391-2400, 2019.
    doi:10.1364/OSAC.2.002391

    15. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
    doi:10.2528/PIER13011202

    16. Hu, Y., Y. Wang, L. Liang, Y. He, W. Chen, and Z. Yan, "Study on circularly polarized patch antenna with asymmetric chiral metamaterial," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 907-910, 2018.
    doi:10.1109/LAWP.2018.2822820

    17. Akgol, O., E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, 12-19, 2018.
    doi:10.1016/j.ijleo.2018.02.028

    18. Fang, F., Y. Cheng, and H. Liao, "Giant optical activity and circular dichroism in the terahertz region based on bi-layer Y-shaped chiral metamaterial," Optik — Int. J. Light Electron. Opt., Vol. 125, 6067-6070, 2014.
    doi:10.1016/j.ijleo.2014.07.074

    19. Cheng, Y., W. Li, and X. Mao, "Triple-band polarization angle independent 90 polarization rotator based on fermat’s spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
    doi:10.2528/PIER18112603

    20. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. of Optics, Vol. 15, No. 2, 2013.
    doi:10.1088/2040-8978/15/2/023001

    21. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
    doi:10.2528/PIER13050601

    22. Hu, Y. W., Y. Wang, Z. M. Yan, and H. C. Zhou, "A high-gain circularly polarized Fabry-Perot antenna with chiral metamaterial-based circular polarizer," Microw. and Optical Technol. Lett., 1-6, 2019.

    23. Cheng, Z. and Y. Cheng, "A multi-functional polarization convertor based on chiral metamaterial for terahertz waves," Optics Communications, Vol. 435, 178-182, 2019.
    doi:10.1016/j.optcom.2018.11.038

    24. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104–4, 2009.

    25. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semiplanar chiral metamaterial structures," IEEE Trans. on Antennas and Propag., Vol. 60, No. 12, 5768-5776, 2012.
    doi:10.1109/TAP.2012.2214015