Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-23

Refractive Index Sensor MIM Based Waveguide Coupled with a Slotted Side Resonator

By Salah Eddine Achi, Abdesselam Hocini, Hocine Ben Salah, and Ahlam Harhouz
Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020
doi:10.2528/PIERM20061803

Abstract

In this paper, a plasmonic sensor based on a metal-insulator-metal (MIM) waveguide with a slotted side-coupled elliptical cavity is proposed. The transmission characteristics of the cavity are analyzed theoretically, and the improvements of performance for the elliptical cavity structure compared to a single disk cavity are studied. The influence of structural parameters on the transmission spectra and sensing performances is investigated thoroughly. The achieved sensitivity for the first mode was S = 959 nm/RIU and S = 2380 nm/RIU for the second one. Its corresponding sensing resolution is 1.04 x 10-5RIU for mode 1 and 4.20 x 10-6RIU for mode 2, respectively, and high transmissions are achieved at the two resonant wavelengths of 898.8 nm and 1857.1 nm. The proposed plasmonic sensor is a good candidate for designing novel devices and applications, in the field of chemical and biological sensing, and also in the field of plasmonic filters, switches, etc.

Citation


Salah Eddine Achi, Abdesselam Hocini, Hocine Ben Salah, and Ahlam Harhouz, "Refractive Index Sensor MIM Based Waveguide Coupled with a Slotted Side Resonator," Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020.
doi:10.2528/PIERM20061803
http://jpier.org/PIERM/pier.php?paper=20061803

References


    1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, Bath, UK, 2007.
    doi:10.1007/0-387-37825-1

    2. Strobbia, P., E. R. Languirand, and B. M. Cullum, "Advances in plasmonic nanostructures for sensing: A review," Optical Engineering, Vol. 54, No. 10, 100902, 2015.
    doi:10.1117/1.OE.54.10.100902

    3. Aberasturi, D. J., A. B. Serrano-Montes, and L. M. Liz-Marzan, "Modern applications of plasmonic nanoparticles: From energy to health," Advanced Optical Materials, Vol. 3, No. 5, 602-617, May 2015.
    doi:10.1002/adom.201500053

    4. Zarrabi, F. B. and M. N. Moghadasi, "Investigated the Fano resonance in the nano ring arrangement," Optik, Vol. 138, 80-86, 2017.
    doi:10.1016/j.ijleo.2017.03.068

    5. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nano emitters," Chem. Rev., Vol. 111, 3888-3912, 2011.
    doi:10.1021/cr1002672

    6. Pandesh, S., M. Maleki, and F. B. Zarrabi, "The sub-wavelength plasmonic nano-antenna based on cross structure," Optik, Vol. 127, 3770-3774, 2016.
    doi:10.1016/j.ijleo.2016.01.045

    7. Zarrabi, F. B., M. Naser-Moghadasi, S. Heydari, M. Maleki, and A. S. Arezomand, "Crossslot nano-antenna with graphene coat for bio-sensing application," Optics Commun., Vol. 371, 34-39, 2016.
    doi:10.1016/j.optcom.2016.03.048

    8. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
    doi:10.1038/nature01937

    9. Tang, B. J., J. C. Wang, X. S. Xia, X. Y. Liang, C. Song, and S. N. Qu, "Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators," Appl. Phys. Express, Vol. 8, No. 3, 032202, 2015.
    doi:10.7567/APEX.8.032202

    10. Bana, X., X. Pang, X. Li, B. Hu, Y. Guo, and H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., Vol. 406, 124-127, 2017.

    11. Gramotnev, D. and S. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics, Vol. 4, No. 83, 2010.

    12. Zayats, A., I. Smolyaninov, and A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3–4, 131-314, 2005.
    doi:10.1016/j.physrep.2004.11.001

    13. Barnes, W., W. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Physic Review Letters, Vol. 92, 107401, 2004.
    doi:10.1103/PhysRevLett.92.107401

    14. Chen, Z., H. Li, B. Li, Z. He, H. Xu, M. Zheng, and M. Zhao, "Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system," Applied Physics Express, Vol. 9, No. 10, 102002, 2016.
    doi:10.7567/APEX.9.102002

    15. Zhan, G., R. Liang, H. Liang, J. Luo, and R. Zhao, "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
    doi:10.1364/OE.22.009912

    ., .
    doi:10.1364/OE.22.009912

    16. Yang, C., W. Shen, J. Zhou, X. Fang, D. Zhao, X. Zhang, C. Ji, B. Fang, Y. Zhang, X. Liu, and L. Gu, Adv. Opt. Mater., Vol. 4, 1981, 2016.

    17. Shi, L., J. He, C. Tan, Y. Liu, J. Hud, X. Wu, M. Chen, X. Zhang, and S. Zhan, "Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity," Optics Communications, Vol. 439, 125-128, 2019.
    doi:10.1016/j.optcom.2019.01.058

    18. Sun, W., Q. He, S. Sun, and L. Zhou, "High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations," Light: Science & Applications, Vol. 5, e16003, 2016.
    doi:10.1038/lsa.2016.3

    19. Huang, Y., C. Min, and G. Veronis, "Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides," Optics Express, Vol. 20, No. 20, 22233-22244, 2012.
    doi:10.1364/OE.20.022233

    20. Hoessbacher, C., Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: A latching optical switch," Optica, Vol. 1, No. 4, 198-202, 2014.
    doi:10.1364/OPTICA.1.000198

    21. Raza, S. and S. Bozhevolnyi, "Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency," Optics Letter, Vol. 40, No. 18, 4253-4256, 2015.
    doi:10.1364/OL.40.004253

    22. Huang, Y., C. Min, P. Dastmalchi, and G. Veronis, "Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors," Optics Express, Vol. 23, No. 11, 23, 14922-14936, 2015.
    doi:10.1364/OE.23.014922

    23. Gao, Y., S. Zhan, Q. Liu, and Y. Liu, "Controllable plasmonic sensing based on Fano resonance in a cavity coupled defective MDM waveguide," Journal of Physics D: Applied Physics, Vol. 49, 265109, 2016.
    doi:10.1088/0022-3727/49/26/265109

    24. Im, H., H. Shao, Y. Park, V. Peterson, C. Castro, R. Weissleder, and H. Lee, "Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor," Nat. Biotechnol., Vol. 32, No. 5, 490, 2014.
    doi:10.1038/nbt.2886

    25. Yu, S., S. Wang, T. Zhao, and J. Yu, "Tunable plasmonic system based on a slotted side-coupled disk resonator and its multiple applications on chip-scale devices," Optik — International Journal for Light and Electron Optics, Vol. 212, 164748, 2020.
    doi:10.1016/j.ijleo.2020.164748

    26. Ben Salah, H., A. Hocini, M. N. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese Journal of Physics, Vol. 61, 86-97, 2019.
    doi:10.1016/j.cjph.2019.07.006

    27. Zhang, Q., X. Huang, X. Lin, J. Tao, and X. Jin, "A subwavelength coupler-type MIM optical filter," Optics Express, Vol. 17, No. 16, 7549, 2009.
    doi:10.1364/OE.17.007549

    28. Wen, K., L. Yan, W. Pan, B. Luo, Z. Guo, Y. Guo, and X. Luo, "Electromagnetically induced transparency-like transmission in a compact side-coupled t-shaped resonator," Journal of Lightwave Technology, Vol. 32, No. 9, 1071-1707, 2014.
    doi:10.1109/JLT.2014.2310236

    29. Yu, S., T. Zhao, J. Yu, and D. Pan, "Tuning multiple fano resonances for on-chip sensors in a plasmonic system," Sensors, Vol. 19, No. 7, 2019.

    30. Zhang, Z., J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, "Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator," Sensors, Vol. 18, 116, 2018.
    doi:10.3390/s18010116

    31. Wang, M., M. Zhang, Y. Wang, R. Zhao, and S. Yan, "Fano resonance in an asymmetric MIM Waveguide structure and its application in a refractive index nanosensor," Sensors, Vol. 19, 791, 2019.
    doi:10.3390/s19040791

    32. Hocini, A., H. Ben Salah, D. Khedrouche, and N. Melouk, "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Opt. Quant. Electron., Vol. 52, 336, 2020.
    doi:10.1007/s11082-020-02446-x

    33. Gai, H. F., J. Wang, and Q. Tian, "Modified debye model parameters of metals applicable for broadband calculations," Appl. Opt., Vol. 46, No. 12, 2229-2233, 2007.
    doi:10.1364/AO.46.002229

    34. Johnson, P. B., "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
    doi:10.1103/PhysRevB.6.4370

    35. Zhang, X., M. Shao, and X. Zeng, "High quality plasmonic sensors based on fano resonance created through cascading double asymmetric cavities," Sensors, Vol. 16, 1730, 2016.
    doi:10.3390/s16101730

    36. Wei, P. K., Y. C. Huang, C. C. chieng, F. G. Tseng, and W. Fann, "Off angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express, Vol. 13, No. 26, 10784-10794, 2005.
    doi:10.1364/OPEX.13.010784

    37. Zhang, Q., X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwave length coupler-type MIM optical flter," Opt. Express, Vol. 17, No. 9, 7549-7555, 2009.
    doi:10.1364/OE.17.007549

    38. Rsoft Design Group, FullWAVE, Inc., , 200 Executive Blvd., Ossining, NY 10562.

    39. Wu, T., Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. He, "The sensing characteristics of plasmonic waveguide with a single defect," Optics Communications, Vol. 323, 44-48, 2014.
    doi:10.1016/j.optcom.2014.02.067

    40. Zhang, Z. et al., "A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application," Phys. Scr., Vol. 94, 125511, 2019.
    doi:10.1088/1402-4896/ab4677

    41. Dolatabady, A., et al., "A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonato," Optics Communications, Vol. 300, 265-268, 2013.
    doi:10.1016/j.optcom.2013.02.037

    42. Ghorbani, S., M. A. Dashti, and M. Jabbari, "Plasmonic nano-sensor based on metal dielectric-metal waveguide with the octagonal cavity ring," Laser Physics, Vol. 28, 066208, 2018.
    doi:10.1088/1555-6611/aab463