Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-05
Design of Circular Array with Yagi-Uda Corner Reflector Antenna Elements and Camera Trap Image Collector Application
By
Progress In Electromagnetics Research M, Vol. 94, 51-59, 2020
Abstract
A six-element circular antenna array with Yagi-Uda corner reflector elements is proposed in order to achieve 360° beam-steering capability, high gain and cost-effective design objectives. The array element is mainly composed by a Yagi-Uda antenna, a corner reflector and a Wilkinson balun. For steering the main beam, instead of classical RF switching techniques, a virtual switching technique is offered. For this aim, each antenna element is connected to an affordable RF transceiver managed by a microcontroller. A USB hub is also used so that a computer operates all microcontrollers as peripheral devices. In this way, the switching operation can be performed in the software level. Furthermore, if every transceiver in the separate chain is set to a different frequency channel, a simultaneous communication is also possible with the help of the multithreading facility of the computer. In order to show the antenna array performance, the main antenna characteristics and test results are given. As a proof of concept, a wireless image collector scenario is also realized for a camera trap application. The results show that the circular antenna array design and switching technique work successfully.
Citation
Suad Basbug, "Design of Circular Array with Yagi-Uda Corner Reflector Antenna Elements and Camera Trap Image Collector Application," Progress In Electromagnetics Research M, Vol. 94, 51-59, 2020.
doi:10.2528/PIERM20051603
References

1. Labadie, N. R., S. K. Sharma, and G. M. Rebeiz, "A novel approach to beam steering using arrays composed of multiple unique radiating modes," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2932-2945, Jul. 2015.
doi:10.1109/TAP.2015.2423695

2. Scott, H. and V. F. Fusco, "360˚ electronically controlled beam scan array," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 333-335, Jan. 2004.
doi:10.1109/TAP.2003.822443

3. Sibille, A., C. Roblin, and G. Poncelet, "Circular switched monopole array for beam steering wireless communication," Electron. Lett., Vol. 33, No. 7, 551-552, Mar. 1997.
doi:10.1049/el:19970402

4. Debogović, T. and J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 446-449, Jan. 2014.
doi:10.1109/TAP.2013.2287018

5. Ji, L., G. Fu, and S.-X. Gong, "Array-fed beam-scanning partially reflective surface (PRS) antenna," Progress In Electromagnetics Research Letters, Vol. 58, 73-79, 2016.
doi:10.2528/PIERL15101802

6. Lai, M. I., T. Y. Wu, J. C. Hsieh, C. H. Wang, and S. K. Jeng, "Compact switched-beam antenna employing a four-element slot antenna array for digital home applications," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2929-2936, Sep. 2008.
doi:10.1109/TAP.2008.928775

7. Wounchoum, P., D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots," Progress In Electromagnetics Research, Vol. 120, 127-141, 2011.
doi:10.2528/PIER11072207

8. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1796-1802, Apr. 2012.
doi:10.1109/TAP.2012.2186235

9. Alam, M. S., Y. Wang, N. Nguyen-Trong, and A. Abbosh, "Compact circular reconfigurable antenna for high directivity and 360° beam scanning," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1492-1496, Aug. 2018.
doi:10.1109/LAWP.2018.2850857

10. Ge, L., K. M. Luk, and S. Chen, "360° beam-steering reconfigurable wideband substrate integrated waveguide horn antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5005-5011, 2016.
doi:10.1109/TAP.2016.2617820

11. Yang, Y. and X. Zhu, "A wideband reconfigurable antenna with 360° beam steering for 802.11ac WLAN applications," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 600-608, Feb. 2018.
doi:10.1109/TAP.2017.2784438

12. Kays, R., B. Kranstauber, P. Jansen, C. Carbone, M. Rowcliffe, T. Fountain, and S. Tilak, "Camera traps as sensor networks for monitoring animal communities," Proc. 34th IEEE Conf. Local Computer Network, 811-818, Zurich, Switzerland, Oct. 2009.

13. Camacho, L., R. Baquerizo, J. Palomino, and M. Zarzosa, "Deployment of a set of camera trap networks for wildlife inventory in western amazon rainforest," IEEE Sensors J., Vol. 17, No. 23, 8000-8007, Dec. 2017.
doi:10.1109/JSEN.2017.2760254

14. Bagree, R., V. R. Jain, A. Kumar, and P. Ranjan, "TigerCENCE: Wireless image sensor network to monitor tiger movement," Real-World Wireless Sensor Networks, 13-24, Springer, Berlin, Heidelberg, 2010.

15. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, USA, 2004.

16. Antoniades, M. A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas Wireless Propag. Lett., Vol. 4, 209-212, 2005.
doi:10.1109/LAWP.2005.851005

17., COMSOL Multiphysics RF Module v. 5.4. COMSOL AB, Stockholm, Sweden, [online], available: https://www.comsol.com/rf-module, accessed on: May 16, 2020.

18. Kraus, J. D., "The corner-reflector antenna," Proc. Inst. Radio Eng., Vol. 28, No. 11, 513-519, Nov. 1940.

19. Sterr, U. O., A. D. Olver, and P. J. B. Clarricoats, "Variable beamwidth corner reflector antenna," Electron. Lett., Vol. 34, No. 11, 1050-1051, May 1998.
doi:10.1049/el:19980708

20. Milijić, M., A. D. Nešić, and B. Milovanović, "Design, realization, and measurements of a corner reflector printed antenna array with cosecant squared-shaped beam pattern," IEEE Antennas Wireless Propag. Lett., Vol. 15, 421-424, 2016.
doi:10.1109/LAWP.2015.2449257

21. Nordic Semiconductors "Single chip 2.4 GHz transceiver,", nRF24L01+ datasheet, Sep. 2008.

22. Emin, B. and S. Basbug, "A low cost measurement system for antenna radiation patterns with logarithmic RF detector," Proc. International Turkic World Congress on Science and Engineering, 800-808, Nigde, Turkey, Jun. 17-18, 2019.

23., Line-of-sight and path profiler software, [online], available: http://heywhatsthat.com/, accessed on: May 16, 2020.