Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-21
A Statistical Model for Estimation of Soil Moisture in Paddy Field Using Microwave Satellite Data
By
Progress In Electromagnetics Research M, Vol. 94, 155-166, 2020
Abstract
Estimation of soil moisture using Synthetic Aperture Radar (SAR) backscatter values, over agricultural area, is still difficult. SAR backscatter is sensitive to the surface properties like roughness, crop cover, and soil type, along with its strong sensitivity to the soil moisture. Hence, to develop a methodology for agricultural area soil moisture estimation using SAR, it is necessary to incorporate the effects of crop cover and soil texture in the soil moisture retrieval model. A field experiment was conducted by the authors and used along with Sentinel 1A SAR data to estimate the soil moisture in the paddy agricultural fields. Generally, water used for irrigation in the study region was obtained from ground water. As in the hot climate conditions ground water level would be reduced, and the water for irrigation must be supplied optimally. Hence, available soil moisture in the field was estimated from SAR data on the day of satellite passing the crop fields and utilized for deciding the amount of water to be supplied. The soil moisture values of soil samples that are collected from the agricultural field are calculated with the laboratory experiments. A soil moisture retrieval model is derived and proposed in this paper after a comparative analysis of experimental soil moisture values and satellite values. The feasibility of above model for paddy agricultural fields is validated using the field measurements.
Citation
Packirisamy Pari, Packirisamy Thirumaraiselvan, Murugaiyan Ramalingam, and Shanmugam Jayalakshmi, "A Statistical Model for Estimation of Soil Moisture in Paddy Field Using Microwave Satellite Data," Progress In Electromagnetics Research M, Vol. 94, 155-166, 2020.
doi:10.2528/PIERM20051401
References

1. Zhang, D., Z. L. Li, R. Tang, B. H. Tang, H. Wu, J. Lu, and K. Shao, "Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions," International Journal Remote Sensing, Vol. 36, 5015-5030, 2015.

2. Abuzar, M., A. McAllister, D. Whitfield, and K. Sheffield, "Remote sensing analysis of crop water use in the macalister irrigation district," Geospatial Science Research, 1-7, 2012.

3. Li, Z.-X., "Modelling the passive microwave remote sensing of wet snow," Progress In Electromagnetics Research, Vol. 62, 143-164, 2006.

4. Awe, G. O., J. M. Reichert, L. C. Timm, and O. O. Wendroth, "Temporal processes of soil water status in a sugarcane field under residue management," Plant Soil, Vol. 387, 395-411, 2015.

5. Chen, X. Z., S. S. Chen, R. F. Zhong, Y. X. Su, J. S. Liao, D. Li, L. Han, Y. Lia, and X. A. Li, "Semi-empirical inversion model for assessing surface soil moisture using AMSR-E brightness temperatures," Journal of Hydrology, Vol. 456, 1-11, 2012.

6. Wigneron, J.-P., T. Schmugge, A. Chanzy, J.-C. Calvet, and Y. Kerr, "Use of passive microwave remote sensing to monitor soil moisture," Agronomie, Vol. 18, 27-43, 1998.

7. Barrett, B. W., E. Dwyer, and P. Whelan, "Soil moisture retrieval from active space borne microwave observations: An evaluation of current techniques," Remote Sensing, 210-242, 2019.

8. Das, H. P., "Satellite-based agro-advisory service," Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 347-359, 2013.

9. Mattikalli, N. M. and E. T. Engman, "Microwave remote sensing and GIS for monitoring surface soil moisture and estimation of soil properties," Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources on Systems, 229-236, 1997.

10. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above Gaussian rough surfaces by the parabolic wave equation: Introduction of the shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.

11. Skidmore, A., Environment Modelling with GIS and Remote Sensing, Taylor and Francis, New York, ISBN: 0-415-24170-7, 2003.

12. Ulaby, F. T., P. P. Batlivala, and M. C. Dobson, "Microwave backscatter dependence on surface roughness in soil moisture and soil texture, Part I - Bare soil," IEEE Transactions on Geoscience and Remote Sensing, Vol. 16, 286-295, 1978.

13. Dubois, P. C., J. Van Zyl, and T. Engman, "Measuring soil moisture with imaging radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, 915-926, 1995.

14. Shi, J., J. Wang, A. Y. Hsu, E. O. O'neill, and E. T. Engman, "Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, 1254-1266, 1997.

15. Gruhier, C., P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi, "Soil moisture active and passive microwave products: Intercomparison and evaluation over a sahelian site," Hydrol. Earth Syst. Sci., Vol. 14, 141-156, 2010.

16. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Artech House Inc., Dedham, MA, USA, 1986.

17. Ulaby, F. T., K. Sarabandi, K. Mcdonald, and M. C. Dobson, "Michigan microwave canopy scattering model," Int. Journal of Remote Sensing, Vol. 11, 1223-1253, 1990.

18. Attema, E. P. W. and F. T. Ulaby, "Vegetation modeled as a water cloud," Radio Sci., Vol. 13, 357-364, 1978.

19. Roger, D., D. Roo, Y. Du, F. T. Ulaby, and M. C. Dobson, "A semi-empirical backscattering model at L-band and C-band for A soybean canopy with soil moisture inversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 864-872, 2001.

20. Aubert, M., N. Baghdadi, M. Zribi, A. Douaoui, C. Loumagne, F. Baup, M. El Hajj, and S. Garrigues, "Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust," Remote Sensing Environment, Vol. 115, 1801-1810, 2011.

21. El Hajj, M., N. Baghdadi, M. Zribi, and H. Bazzi, "Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas," Remote Sensing, Vol. 9, 1-28, 2017.

22. Gao, Q., M. Zribi, M. Escorihuela, and N. Baghdadi, "Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution," Sensors, Vol. 17, No. 9, 1-21, 2017.

23. Paloscia, S., S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A. Reppucci, "Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation," Remote Sensing Environment, Vol. 134, 234-248, 2013.

24. Zribi, M., A. Gorrab, N. Baghdadi, Z. Lili-Chabaane, and B. Mougenot, "Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter," Geoscience and Remote Sensing Letter, Vol. 11, 848-852, IEEE, 2013.

25. Prakash, R., D. Singh, and N. P. Pathak, "The effect of soil texture in soil moisture retrieval for specular scattering at C-band," Progress In Electromagnetics Research, Vol. 108, 177-204, 2010.

26. Ballester-Berman, J. D., F. Vicente-Guijalba, and J. M. Lopez-Sanchez, "Polarimetric SAR model for soil moisture estimation over vineyards at C-band," Progress In Electromagnetics Research, Vol. 142, 639-665, 2013.

27. Panciera, R., M. A. Tanase, K. Lowell, and J. P. Walker, "Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 4966-4979, 2014.

28. Singh, D. and A. Kathpalia, "An efficient modeling with GA approach to retrieve soil texture, moisture and roughness from ERS-2 SAR data," Progress In Electromagnetics Research, Vol. 77, 121-136, 2007.

29. Kasischke, E. S., J. M. Melack, and M. C. Dobson, "The use of imaging radars for ecological applications - A review," Remote Sensing of Environment, Vol. 59, 141-156, 1997.

30. Li, Z., W. Z. Liu, X. C. Zhang, and F. L. Zheng, "Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China," Journal of Hydrology, Vol. 377, 35-42, 2009.

31. Feng, X. M., B. J. Fu, S. Piao, S. Wang, P. Ciais, Z. Z. Zeng, Y. H. Lu, Y. Zeng, Y. Li, X. H. Jiang, and B. F. Wu, "Revegetation in China's Loess Plateau is approaching sustainable water resource limits," Nat. Clim. Chang., Vol. 6, 1019-1022, 2016.

32. Gao, X. D., H. C. Li, X. N. Zhao, W. Ma, and P. T. Wu, "Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration," Geoderma, Vol. 319, 61-69, 2018.

33. Dobos, E., "Albedo," Encyclopedia of Soil Science, 1-3, 2003.

34. Zribi, M., T. Baghdadi, N. Holah, and O. Fafin, "New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion," Remote Sensing of Environment, Vol. 96, 485-496, 2005.

35. Malik, M. S. and J. P. Shukla, "Estimation of soil moisture by remote sensing and field methods: A review," International Journal of Remote Sensing & Geoscience, Vol. 3, No. 4, 21-27, 2014.

36. Attema, E. P. W. and F. T. Ulaby, "Vegetation modeled as a water cloud," Radio Science, Vol. 13, 357-364, 1978.

37. Lakhankar, T., N. Krakauer, and R. Khanbilvardi, "Applications of microwave remote sensing of soil moisture for agricultural applications," International Journal of Terra space Science and Engineering, Vol. 2, No. 1, 81-91, 2009.

38. Mekonnen, D. F., "Satellite remote sensing for soil moisture estimation, Gumara catchment, Ethiopia,", Master Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, Netherlands, 2009.

39. Copernicus Space Component Data Access Portal: https://scihub.copernicus.eu /dhus/#/home.

40. U.S. Geological Survey ‘EarthExplorer' website: https://earthexplorer.usgs.gov/.

41. Kirimi, F., D. N. Kuria, F. Thonfeld, E. Amler, K. Mubea, S. Misana, and G. Menz, "Influence of vegetation cover on the oh soil moisture retrieval model: A case study of the Malinda Wetland Tanzania," Advances in Remote Sensing, Vol. 5, 28-42, 2016.

42. El Hajj, M., N. Baghdadi, M. Zribi, G. Belaud, B. Cheviron, D. Courault, and F. Charron, "Soil moisture retrieval over irrigated grassland using X-band SAR data," Remote Sensing Environment, Vol. 176, 202-218, 2016.

43. Sekertekin, A., A. M. Marangoz, and S. Abdikan, "Soil moisture mapping using Sentinel-1A synthetic aperture radar data," International Journal of Environment and Geoinformatics, Vol. 5, No. 2, 178-188, 2016.