Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-09
Partially Dielectric-Filled Rectangular Waveguide Configuration, Proposed for Broadband and Low Loss Substrate Integrated Waveguides Design
By
Progress In Electromagnetics Research M, Vol. 94, 73-82, 2020
Abstract
In this paper, a new cross section configuration of partially dielectric-filled rectangular waveguide (PDF-RW) is proposed and analyzed. It may beused when substrate integrated waveguides (SIWs) are designed such as to maximize the frequency bandwidth for insertion losses as low as possible. Imposing the boundary conditions for the electromagnetic field components, the equations for the cutoff frequencies and propagation constants are developed for the TEm0 modes. It is shown that the cutoff frequency equations developed in this paper may also be used to analyze particular cases investigated by other authors. The ratio between the cutoff frequencies of the TE20 and TE10 modes is computed and represented graphically for different geometric dimensions of the proposed PDF-RW configuration. The conductor and dielectric losses for the TE10 mode are computed as well, based on the results provided by the equations developed in this paper. The results obtained by using the proposed approach are compared to the HFSS (High-Frequency Structure Simulator) results, and very good agreement is observed between them.
Citation
Stefan Simion, "Partially Dielectric-Filled Rectangular Waveguide Configuration, Proposed for Broadband and Low Loss Substrate Integrated Waveguides Design," Progress In Electromagnetics Research M, Vol. 94, 73-82, 2020.
doi:10.2528/PIERM20051302
References

1. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of a laminated waveguide," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1811-1814, 1998.

2. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

3. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits - A new concept for high-frequency electronics and optoelectronics," Telecommunications in Modern Satellite, Cable and Broadcasting Service, Vol. 1, 2003.

4. Cassivi, Y. and K. Wu, "Substrate integrated nonradiative dielectric waveguide," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 89-91, 2004.
doi:10.1109/LMWC.2004.824808

5. Bozzi, M., M. Pasian, and L. Perregrini, "Modeling of losses in substrate integrated waveguide components," International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Pavia, Italy, May 2014.

6. Deslandes, D. and K. Wu, "Design considerations and performance analysis of substrate integrated waveguide components," Proc. of European Microwave Conference, 881-884, Milano, Sep. 2002.

7. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

8. Ranjkesh, N. and M. Shahabadi, "Reduction of dielectric losses in substrate integrated waveguide," Electronics Letters, Vol. 42, No. 21, 1230-1231, 2006.
doi:10.1049/el:20061870

9. Jin, L., R. Lee, and I. Robertson, "Analysis and design of a novel low-loss hollow substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 8, 1616-1624, 2014.
doi:10.1109/TMTT.2014.2328555

10. Belenguer, A., H. Esteban, A. L. Borja, and V. E. Boria, "Empty SIW technologies: A major step toward realizing low-cost and low-loss microwave circuits," IEEE Microwave Magazine, Vol. 20, No. 3, 24-45, 2019.
doi:10.1109/MMM.2018.2885630

11. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.

12. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., John Wiley & Sons, 2001.
doi:10.1109/9780470544662

13. Ayres, W. P., P. H. Vartanian, and A. L. Helgesson, "Propagation in dielectric slab loaded rectangular waveguide," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 215-222, 1958.
doi:10.1109/TMTT.1958.1124541

14. Deslandes, D., M. Bozzi, P. Arcioni, and K. Wu, "Substrate integrated slab waveguide (SISW) for wideband microwave applications," Proc. IEEE Microwave Theory and Techniques Society Int. Microwave Symp. Dig., Vol. 2, 1103-1106, 2003.

15. Khanjar, K. A. and T. Djerafi, "Partially dielectric-filled empty substrate integrated waveguide design for millimeter-wave applications," Progress In Electromagnetics Research C, Vol. 87, 135-146, 2018.
doi:10.2528/PIERC18061109

16. Gardiol, F. E., "Higher-order modes in dielectrically loaded rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, No. 11, 919-924, 1968.
doi:10.1109/TMTT.1968.1126827

17. Bigelli, F., D. Mencarelli, M. Farina, G. Venanzoni, P. Scalmati, C. Renghini, and A. Morini, "Design and fabrication of a dielectricless substrate-integrated waveguide," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 2, 256-261, 2016.
doi:10.1109/TCPMT.2015.2513077

18. Belenguer, A., H. Esteban, and V. E. Boria, "Novel empty substrate integrated waveguide for high-performance microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 832-839, 2014.
doi:10.1109/TMTT.2014.2309637

19. Parment, F., A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, "Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 4, 1228-1238, 2015.
doi:10.1109/TMTT.2015.2408593

20. High Frequency Structure Simulator (HFSS) - User's Guide, (Ansoft Corporation).