Vol. 93

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-06-18

Contribution to the Experimental Characterization of the Electromagnetic Properties of HTS

By Yazid Statra, Hocine Menana, and Bruno Douine
Progress In Electromagnetics Research M, Vol. 93, 137-144, 2020
doi:10.2528/PIERM20050705

Abstract

This work is a contribution to the characterization of the electromagnetic properties of high temperature superconductors (HTS) made of Bismuth Strontium Calcium Copper Oxides (BSCCO). The electromagnetic proprieties (critical current density and self-field AC losses) of a tape and a coil are determined experimentally at different frequencies, and compared to analytical models and finite element simulations for a better analysis of the physical phenomena. As shown in this work, the transition from the element to the system is not straightforward, and the characterization of such a material at the system scale is necessary due to their high sensitivity to the magnetic field. Solutions to some measurement problems are also highlighted.

Citation


Yazid Statra, Hocine Menana, and Bruno Douine, "Contribution to the Experimental Characterization of the Electromagnetic Properties of HTS," Progress In Electromagnetics Research M, Vol. 93, 137-144, 2020.
doi:10.2528/PIERM20050705
http://jpier.org/PIERM/pier.php?paper=20050705

References


    1. Tixador, P., Les Supraconducteurs, Hermès Science, 1995.

    2. Bendali, S., "Dimensionnement d’un moteur supraconducteur HTc,", Ph.D. thesis, Lorraine University, 2012.

    3. Gianni, L., et al., "Transport ac losses in YBCO coated conductors," IEEE Trans. Appl. Superconduct., Vol. 16, No. 2, 147-149, Jun. 2006.
    doi:10.1109/TASC.2006.870819

    4. Campbell, A. M., "A general treatment of losses in multifilamentary superconductors," Cryogenics, Vol. 22, 3-16, 1982.
    doi:10.1016/0011-2275(82)90015-7

    5. Norris, W. T., "Calculation of hysteresis losses in hard superconductors carrying as: Isolated conductors and edges of thin sheets," Journal of Physics D, Vol. 3, 489-507, 1970.
    doi:10.1088/0022-3727/3/4/308

    6. Douine, B., J. Lévêque, and A. Rezzoug, "AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current ," IEEE Trans. Appl. Superconduct., Vol. 10, No. 1, 1489-1492, Mar. 2000.
    doi:10.1109/77.828523

    7. SUMITOMO, , http://www.sei.co.jp/super/hts/.

    8. Kim, Y. B., C. F. Hempstead, and A. R. Strnad, "Critical persistent currents in hard superconductors," Physical Review Letters, Vol. 9, No. 7, 306-309, Oct. 1962.
    doi:10.1103/PhysRevLett.9.306

    9. Grilli, F., F. Sirois, V. Zermeño, and M. Vojenciak, "Self-consistent modeling of the Icof HTS devices: How accurate do models really need to be?," IEEE Trans. Appl. Superconduct., Vol. 24, No. 6, 1-8, 2014.
    doi:10.1109/TASC.2014.2326925

    10. Willis, J. O., J. Y. Coulter, and M. W. Rupich, "n-value analysis of position-dependent property variability in long-length coated conductors," IEEE Trans. Appl. Superconduct., Vol. 21, No. 3, 2988-2991, 2011.
    doi:10.1109/TASC.2010.2087372

    11. Thakur, K. P., A. Raj, E. H. Brandt, J. Kvitkovic, and S. V. Pamidi, "Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable," Supercond. Sci. Technol., Vol. 24, No. 6, 2011.
    doi:10.1088/0953-2048/24/6/065024

    12. Brambilla, R., F. Grilli, and L. Martini, "Development of an edge element model for Ac loss computation in high temperature superconductors," Supercond. Sci. Technol., Vol. 20, 16-24, 2007.
    doi:10.1088/0953-2048/20/1/004

    13. Douine, B., et al., "Self field effect compensation in an HTS tube," IEEE Trans. Appl. Superconduct., Vol. 18, No. 3, 1698-1703, 2008.
    doi:10.1109/TASC.2008.2000903