Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-22

Analysis of the Noise Components for Affecting the Imaging Performance of the Synthetic Aperture Interferometric Radiometer (SAIR)

By Jinguo Wang, Zhaozhao Gao, Jie Gu, Shiwen Li, Xiaoyun Zhang, Zitong Dong, Zilong Zhao, Fan Jiang, Bo Qi, and Wei Zhao
Progress In Electromagnetics Research M, Vol. 96, 139-146, 2020
doi:10.2528/PIERM20040805

Abstract

Microwave radiometer is a high-sensitivity ``camera'', which realizes high-resolution imaging by receiving the natural radiation signal in microwave band from the observation scene. Due to the imperfection of the system hardware, the measured data include not only the radiated signal of interest but also the noise generated by the system hardware itself. These unexpected noises will affect the imaging performance of the system, especially for the synthetic aperture interferometric radiometer (SAIR). In this paper, the noise behavior of the SAIR system is analyzed and modeled for the first time. Based on the noise behavior model, a method is proposed to pick the optimal averaging time for imaging with high fidelity in the SAIR system. Some experiments are carried out to verify the correctness of the noise behavior model and the optimal averaging time picking method for SAIR. With the noise behavior model and the optimal averaging time picking method, it can provide an effective guide for the SAIR system design, error correction, and reconstruction.

Citation


Jinguo Wang, Zhaozhao Gao, Jie Gu, Shiwen Li, Xiaoyun Zhang, Zitong Dong, Zilong Zhao, Fan Jiang, Bo Qi, and Wei Zhao, "Analysis of the Noise Components for Affecting the Imaging Performance of the Synthetic Aperture Interferometric Radiometer (SAIR)," Progress In Electromagnetics Research M, Vol. 96, 139-146, 2020.
doi:10.2528/PIERM20040805
http://jpier.org/PIERM/pier.php?paper=20040805

References


    1. Ulaby, F., R. Moore, and A. Fung, "Microwave remote sensing active and passive: Microwave remote sensing fundamentals and radiometry," Addison Wesley Publishing Company, 1-456, 1981.

    2. Carmona, A. J., "Application of interferometric radiometry to earth observation,", Univ. Politècnica Catalunya, Barcelona, Spain, 1997.

    3. Mann, C., "A compact real time passive terahertz imager," Proceedings of SPIE, Vol. 6211, 1-5, 2006.

    4. Luukanen, A., L. Gronberg, M. Gronholm, P. Lappalainen, M. Leivo, A. Rautiainen, A. Tamminen, J. Ala-Laurinaho, C. Dietlein, and E. Grossman, "Real-time passive terahertz imaging system for standoff concealed weapons imaging," Proceedings of SPIE, Vol. 7670, 1-8, 2010.

    5. May, T., G. Zieger, S. Anders, V. Zakosarenko, M. Starkloff, H. G. Meyer, G. Thorwirth, and E. Kreysa, "Passive stand-off terahertz imaging with 1 hertz frame rate," Proceedings of SPIE, Vol. 6949, 1-8, 2008.

    6. Su, K., Z. Liu, R. B. Barat, D. E. Gary, Z. Michalopoulou, and J. F. Federici, "Two dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system," Applied Optics, Vol. 49, No. 19, 13-19, 2010.
    doi:10.1364/AO.49.000E13

    7. Corbella, I., F. Torres, A. Camps, A. Colliander, M. Martín-Neira, S. Ribó, K. Rautiainen, N. Duffo, and M. Vall-llossera, "MIRAS end-to-end calibration: Application to SMOS L1 processor," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 5, 1126-1134, 2005.
    doi:10.1109/TGRS.2004.840458

    8. McMullan, K. D., M. A. Brown, M. Martin-Neira, W. Rits, S. Ekholm, J. Matri, and J. Lemanczyk, "SMOS: The payload," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 3, 594-605, 2008.
    doi:10.1109/TGRS.2007.914809

    9. Gaier, T., P. Kangaslahti, B. Lambrigtsen, I. Ramos-Perez, A. Tanner, D. McKague, C. Ruf, M. Flynn, Z. Zhang, R. Backhus, and D. Austerberry, "A 180 GHz prototype for a geostationary microwave imager/sounder-GeoSTAR-III," 2016 IEEE International Geoscience and Remote Sensing Symposium, 2021-2023, 2016.
    doi:10.1109/IGARSS.2016.7729521

    10. Land, D. V., A. P. Levick, and J. W. Hand, "The use of the Allen deviation for the measurement of the noise and drift performance of microwave radiometers," Measurement Science and Technology, Vol. 18, No. 7, 1917-1928, 2007.
    doi:10.1088/0957-0233/18/7/018

    11. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "Regularization imaging algorithm with accurate G matrix for near-field MMW synthetic aperture imaging radiometer," Progress In Electromagnetics Research B, Vol. 58, 193-203, 2014.
    doi:10.2528/PIERB14011602

    12. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
    doi:10.2528/PIER13060702

    13. Wells, J., W. Daywitt, and C. Miller, "Measurement of effective temperatures of microwave noise sources," IEEE Transactions on Instrumentation Measurement, Vol. 13, No. 1, 17-28, 1964.
    doi:10.1109/TIM.1964.4313364

    14. Ziel, A., Noise in Measurements, Chapter 7, Wiley, New York, 1976.

    15. Cowley, A. M. and H. O. Sorensen, "Quantitative comparison of solid-state microwave detectors," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 12, 588-602, 1967.
    doi:10.1109/TMTT.1966.1126337

    16. Barnes, J., A. Chi, L. Cutler, D. Healey, D. Leeson, T. McGunigal, Jr. Mullen, W. Smith, R. Sydnor, R. Vessot, and G. Winkler, "Characterization of frequency stability," IEEE Transactions on Instrumentation Measurement, Vol. 20, No. 2, 105-120, 1971.
    doi:10.1109/TIM.1971.5570702

    17. Allan, D., "Should the classical variance be used as a basic measure in standards metrology?," IEEE Transactions on Instrumentation Measurement, Vol. 36, No. 2, 646-654, 1987.
    doi:10.1109/TIM.1987.6312761