Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-03
A Small Form Factor Impedance Tuned Microstrip Antenna with Improved Gain Response
By
Progress In Electromagnetics Research M, Vol. 95, 13-23, 2020
Abstract
This research work adopts an open-circuited-series stub-tuning in sequence with unmatched antenna radiator to bring out a small form factor. Thereby, the effective antenna radiator size has been shrunk up to 0.2λ, where similar efficiency and beam pattern has been maintained. The antenna is conceptualized with symmetrical slots, which indicates a multi-ring structure to contribute multiband miniaturization. This consists a loop based rectangular-ring connected with an E-shaped patch, which is excited through a microstrip stepper impedance transmission line followed by an equally distributed strip-line. It enables enhanced impedance-matching at 2.76 GHz and 6.34 GHz by a stepper impedance transmission line with stub-loading technique. The antenna aperture area miniaturization of 56% has been achieved by introducing slots on the radiator patch. Moreover, this miniaturized patch exhibits improved gain response of 4.43 dBi and 5.37 dBi in the broadside direction. The proposed design occupies a dimension of (0.22λ × 0.26λ) mm2.
Citation
Seshadri Binaya Behera, Debaprasad Barad, and Subhrakanta Behera, "A Small Form Factor Impedance Tuned Microstrip Antenna with Improved Gain Response," Progress In Electromagnetics Research M, Vol. 95, 13-23, 2020.
doi:10.2528/PIERM20031903
References

1. Biswas, P., S. De, B. Bag, D. Chanda Sarkar, S. Biswas, and P. P. Sarkar, "Dual ISM band printed antenna with omnidirectional radiation pattern and better radiation efficiency," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21780, 2019.

2. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905

3. Zhang, Y. P., "A dielectric loaded miniature antenna for microcellular and personal communication," Proc. IEEE AP-Symp., 1152-1155, June 1995.

4. Hanae, E., N. Amar Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003

5. Hung, T., J. Liu, C. Wei, C. Chen, and S. Bor, "Dual-band circularly polarized aperture-coupled stack antenna with fractal patch for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 24, 130-138, 2014.
doi:10.1002/mmce.20720

6. Samantaray, D., S Bhattacharyya, and K. V. Srinivas, "A modified fractal-shaped slotted patch antenna with defected ground using metasurface for dual band applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21932, 2019.
doi:10.1002/mmce.21932

7. Mandal, K. and P. P. Sarkar, "A compact high gain microstrip antenna for wireless applications," AEU International Journal of Electronics and Communication, Vol. 67, 1010-1014, 2013.
doi:10.1016/j.aeue.2013.06.001

8. Khandelwala, M. K., B. K. Kanaujia, S. Dwaria, S. Kumar, and A. K. Gautam, "Analysis and design of dual band compact stacked Microstrip patch antenna with defected ground structure for WLAN/WiMax applications," AEU International Journal of Electronics and Communication, Vol. 69, 39-47, 2015.
doi:10.1016/j.aeue.2014.07.018

9. Pinhas, S. and S. Shtrikman, "Comparison between computed and measured bandwidth of quarter-wave microstrip radiators," IEEE Trans. Antennas and Propag., Vol. 36, No. 11, 1615-1616, November 1988.
doi:10.1109/8.9713

10. Chair, R., K. F. Lee, and K. M. Luk, "Bandwidth and cross-polarization characteristics of quarter-wave shorted patch antennas," Microw. Opt. Technol. Lett., Vol. 22, No. 2, 101-103, 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<101::AID-MOP7>3.0.CO;2-X

11. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/el:19950426

12. Shi, H., J. Li, J. Shi, J. Chen, Z. Li, S. Zhu, T. A. Khan, and A. Zhang, "Miniaturized circularly polarized patch antenna using coupled shorting strip and capacitive probe feed," AEU International Journal of Electronics and Communication, Vol. 98, 235-240, 2019.
doi:10.1016/j.aeue.2018.11.022

13. Motevasselian, A. and W. G. Whittow, "Miniaturization of a circular patch microstrip antenna using an arc projection," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 517-520, 2017.
doi:10.1109/LAWP.2016.2586749

14. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas and Propag., Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

15. Jahani, S., J. Rashed-Mohassel, and M. Shahabadi, "Miniaturization of circular patch antennas using MNG metamaterials," IEEE Antennas & Wireless Propagation Letters, Vol. 9, 1194-1196, 2010.
doi:10.1109/LAWP.2010.2098472

16. Farzami, F., K. Forooraghi, and M. Norooziarab, "Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate," IEEE Antennas & Wireless Propagation Letters, Vol. 10, 1540-1542, 2011.
doi:10.1109/LAWP.2011.2181968

17. Zong, B., G. Wang, C. Zhou, and Y. Wang, "Compact low-profile dual-band patch antenna using novel TL-MTM structures," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 567-570, 2015.
doi:10.1109/LAWP.2014.2372093

18. Hsieh, C., C. Wu, and T. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

19. Chen, H., Y. Wang, Y. Lin, S. Lin, and S. Pan, "A compact dual-band dielectric resonator antenna using a parasitic slot," IEEE Antennas & Wireless Propagation Letters, Vol. 8, 173-176, 2009.
doi:10.1109/LAWP.2008.2001119

20. Hanae, E., N. Amar Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.

21. Latif, S. I., L. Shafai, and C. Shafai, "An engineered conductor for gain and efficiency improvement of miniaturized microstrip antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 2, 77-90, 2013.
doi:10.1109/MAP.2013.6529319

22. Luo, Y. and Z. N. Chen, "A gain-enhanced patch antenna using a ghost reversal source," Proc. in IEEE International Workshop on Antenna Technology (iWAT), 1-4, China, 2018.

23. Ambresh, P. A., P. M. Hadalgi, P. V. Hunagund, "Effect of slots on microstrip patch antenna characteristics," 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 239-241, March 18–19, 2011.

24. Ansari, J. A., A. Mishra, N. P. Yadav, P. Singh, and B. R. Vishvakarma, "Analysis of W-slot loaded patch antenna for dualband operation," AEU International Journal of Electronics and Communication, Vol. 66, 32-38, 2012.
doi:10.1016/j.aeue.2011.04.011

25., www.ntia.doc.gov/files/ntia/publications/compendium.

26. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., A John Wiley & Sons, INC Publication, 2003.

27. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

28. Gan, B., L. Zhou, Y. Zhang, and J. Mao, "A dual-band microstrip antenna using a circular ring and a concentric disk," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, 268-276, 2016.
doi:10.1002/mmce.20963