Vol. 92
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-08
Design of Universal Optical Logic Gates Using Heterogeneous Swastika Structured Hexagonal Photonic Crystal Ring Resonator
By
Progress In Electromagnetics Research M, Vol. 92, 89-101, 2020
Abstract
In this paper, a novel heterogeneous swastika structured hexagonal photonic crystal ring resonator for the realization of universal logic gates is designed using two dimensional photonic crystals. The proposed structure has square lattice of 16 × 16 hexagon-shaped chalcogenide glass rods embedded in an air substrate with a refractive index of 3.1. The choice of chalcogenide in the realization of optical logic gates benefits from wide optical windows in the mid-infrared region. Through plane wave expansion method, the contrast ratio for the proposed structures, namely, NAND, NOR, EX-OR, and EX-NOR gates is 22.6 dB, 17.20 dB, 18.3 dB, and 12.78 dB, respectively. Moreover, the footprint of the proposed structure is 9.24 µm × 9.24 µm.
Citation
Damodaran Saranya, and Anbazhagan Rajesh, "Design of Universal Optical Logic Gates Using Heterogeneous Swastika Structured Hexagonal Photonic Crystal Ring Resonator," Progress In Electromagnetics Research M, Vol. 92, 89-101, 2020.
doi:10.2528/PIERM20012203
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059, May 18, 1987.

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486, Jun. 8, 1987.

3. Goudarzi, K., A. Mir, I. Chaharmahali, and D. Goudarzi, "All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal," Opt. & Laser Technol., Vol. 1, No. 78, 139-42, Apr. 2016.

4. Fu, Y., X. Hu, and Q. Gong, "Silicon photonic crystal all-optical logic gates," Phys. Lett. A, Vol. 377, No. 3-4, 329-33, Jan. 3, 2013.

5. D'souza, N. M. and V. Mathew, "Interference based square lattice photonic crystal logic gates working with different wavelengths," Opt. & Laser Technol., Vol. 80, 214-9, Jun. 1, 2016.

6. Jiang, Y. C., S. B. Liu, H. F. Zhang, and X. K. Kong, "Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure," J. Opt. Commun., Vol. 332, 359-65, Dec. 1, 2014.

7. Mohebbi, Z., N. Nozhat, and F. Emami, "High contrast all-optical logic gates based on 2D nonlinear photonic crystal," J. Opt. Commun., Vol. 355, 130-6, Nov. 15, 2015.

8. Fasihi, K., "Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals," Optik, Vol. 127, No. 11, 4669-74, Jun. 1, 2016.

9. Bchir, R., A. Bardaoui, and H. Ezzaouia, "Design of silicon-based two-dimensional photonic integrated circuits: XOR gate," IET Optoelectronics, Vol. 7, No. 1, 25-9, Feb. 1, 2013.

10. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filters based on photonic crystal ring resonators," Opt. Commun., Vol. 285, No. 3, 368-72, Feb. 1, 2012.

11. Taalbi, A., G. Bassou, and M. Y. Mahmoud, "New design of channel drop filters based on photonic crystal ring resonators," Opt.-Int. J. for Light and Electron Opt., Vol. 124, No. 9, 824-7, May 1, 2013.

12. Djavid, M., F. Monifi, A. Ghaffari, and M. S. Abrishanmian, "Hetrostructure wavelength division multiplixers using photonic crystals ring resonators," Opt. Commun., Vol. 28, 4028-4032, 2008.

13. Gupta, M. M. and S. Medhekar, "A versatile optical junction using photonic band-gap guidance and self collimation," Appl. Phys. Lett., Vol. 105, No. 13, 131104, Sep. 29, 2014.

14. Gupta, M. M. and S. Medhekar, "Asymmetric light reflection at the reflecting layer incorporated in a linear, time-independent and non-magnetic two-dimensional photonic crystal," Eur. Phys. Lett., Vol. 114, No. 5, 54002, Jul. 8, 2016.

15. Kannaiyan, V., R. Savarimuthu, and S. K. Dhamodharan, "Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator," Opto-Electron. Rev., Vol. 25, No. 2, 74-9, Jun. 1, 2017.

16. Seifouri, M., S. Olyaee, M. Sardari, and A. Mohebzadeh-Bahabady, "Ultra-fast and compact all-optical half adder using 2D photonic crystals," Optoelectronics, Vol. 13, No. 3, 139-43, Jan. 24, 2019.

17. Hassangholizadeh-Kashtiban, M., H. Alipour-Banaei, M. B. Tavakoli, and R. Sabbaghi-Nadooshan, "An ultra fast optical reversible gate based on electromagnetic scattering in nonlinear photonic crystal resonant cavities," J. Opt. Mat., Vol. 94, 371-7, Aug. 1, 2019.

18. Khosroabadi, S., A. Shokouhmand, and S. Marjani, "Full optical 2-bit analog to digital convertor based on nonlinear material and ring resonators in photonic crystal structure," Optik., Vol. 200, 163393, Jan. 1, 2020.

19. Zhang, X. R., J. P. Liu, H. Liu, Q. Pan, F. Q. Yang, S. Q. Zhang, Y. M. Guo, X. J. Liu, and X. Y. Wu, "The adjustable band gap structure and transmission characteristics for the two-dimensional function photonic crystal waveguide," Phys. B: Condensed Matter., Vol. 567, 5-10, Aug. 15, 2019.

20. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.

21. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 8, 623-630, 1975.