Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-02-10

A Novel Approach Using an Inductive Loading to Lower the Resonant Frequency of a Mushroom-Shaped High Impedance Surface

By Minyu Gu, Daniel Vorobiev, Woo Seok Kim, Hung-Ta Chien, Hyun-Myung Woo, Sung Cheol Hong, and Sung Il Park
Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020
doi:10.2528/PIERM19110607

Abstract

This paper reports a novel approach using an inductive loading to reduce the resonant frequency of a mushroom-shaped high impedance surface. The current path is extended on the mushroom-shaped structure's vias and additional traces, which introduces a three-dimensional inductor to the unit cell and leads to an increase in total inductance. As a result, the resonant frequency of the high impedance structure decreases, and a smaller unit cell size can be achieved at the low gigahertz frequency range. Finite element electromagnetic simulation, equivalent circuits modeling, and experimental measurements suggest the feasibility of the proposed approach.

Citation


Minyu Gu, Daniel Vorobiev, Woo Seok Kim, Hung-Ta Chien, Hyun-Myung Woo, Sung Cheol Hong, and Sung Il Park, "A Novel Approach Using an Inductive Loading to Lower the Resonant Frequency of a Mushroom-Shaped High Impedance Surface," Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020.
doi:10.2528/PIERM19110607
http://jpier.org/PIERM/pier.php?paper=19110607

References


    1. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    2. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
    doi:10.1109/TAP.2003.817575

    3. Kim, I. K., H. Wang, S. J. Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 1665-1672, 2012.
    doi:10.1109/TVT.2012.2189254

    4. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.
    doi:10.1109/LAWP.2015.2389274

    5. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
    doi:10.2528/PIER12012904

    6. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2011.
    doi:10.1109/TAP.2011.2167912

    7. Kim, S., A. Li, and D. F. Sievenpiper, "Reconfigurable impedance ground plane for broadband antenna systems," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1503-1504, IEEE, July 2017.

    8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
    doi:10.2528/PIER12110902

    9. Bansal, A., B. C. Paul, and K. Roy, "An analytical fringe capacitance model for interconnects using conformal mapping," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 12, 2765-2774, 2006.
    doi:10.1109/TCAD.2006.882489

    10. Grover, F. W., Inductance Calculations: Working Formulas and Tables, Courier Corporation, 2004.

    11. Remski, R., "Analysis of photonic bandgap surfaces using Ansoft HFSS," Microwave Journal, Euroglobal Edition, Vol. 43, No. 9, 190-199, 2000.

    12. Ashcroft, N. W. and N. D. Mermin, "Solid state physics,", Saunders College, Philadelphia, 1976.

    13. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
    doi:10.1109/LAWP.2009.2038346