Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible

By Sharhabeel Alyones, Charles W. Bruce, and Michael Granado
Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020


In this article we theoretically investigate the visible extinction efficiency that can be obtained using a two dimensional particle. We show that extinction efficiencies up to the upper limit can be obtained from two dimensional particles (thin circular disks or flakes) compared with one dimensional (fibers) and three dimensional particles (spheres). Features of the theory of electromagnetic extinction by thin circular disks are thoroughly investigated for wide size and material contents parameters in the visible. The results of this article are of importance for the search of efficient aerosol attenuative candidates in the visible spectral region.


Sharhabeel Alyones, Charles W. Bruce, and Michael Granado, "Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible," Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020.


    1. Waterman, P. C., "Scattering, absorption, and extinction by thin fibers," J. Opt. Soc. Am. A, Vol. 22, 2430, 2005.

    2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856, 2007.

    3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering and absorption by randomly oriented fibers," J. Opt. Soc. A, Vol. 32, 6, 2015.

    4. Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model," J. Phys. Chem. B, Vol. 110, 7238, 2006.

    5. Lee, K. S. and M. A. El-Sayed, "Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index," J. Phys. Chem. B, Vol. 109, 20331, 2005.

    6. Chang, W. S., J. W. Ha, L. S. Slaughter, and S. Link, "Plasmonic nanorod absorbers as orientation sensors," Proc. Natl. Acad. Sci., Vol. 107, 2781, USA, 2010.

    7. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095, 2009.

    8. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphite microtubes," Appl. Opt., Vol. 51, 3250, 2012.

    9. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648, 2004.

    10. Gurton, K. P. and C. W. Bruce, "Parametric study of the absorption cross-section for a moderately conducting thin cylinder," Appl. Opt., Vol. 34, 2822, 1995.

    11. Jelinek, A. V. and C.W. Bruce, "Extinction spectra of high-conductivity fibrous aerosols," J. Appl. Phys., Vol. 78, 2675, 1995.

    12. Hart, M. and C. W. Bruce, "Backscatter measurements of thin nickel-coated graphite fibers," IEEE Trans. Antennas Propag., Vol. 48, 842, 2000.

    13. Willis, T. M. and H.Weil, "Disk scattering and absorption by an improved computational method," Appl. Opt., Vol. 26, 18, 1987.

    14. Hanarp, P., M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B, Vol. 107, 5768, 2003.

    15. Li, N., Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, "H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency," Chem. Phys. Chem., Vol. 13, No. 10, 2526-2530, 2012.

    16. Langhammer, C., Z. Yuan, and I. Zoric B. Kasemo, "Plasmonic properties of supported Pt and Pd nanostructures," Nano Lett., Vol. 6, 833, 2006.

    17. Anquillare, E. L., O. D. Miller, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, S. G. Johnson, and M. Soljacic, "Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks," Optics Express, Vol. 24, No. 10, 10806, 2016.

    18. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic-radiation from finite dielectric circular-cylinder," J. Phys. A, Vol. 16, 65, 1983.

    19. DeVore, R., D. B. Hodge, and R. G. Kouyoumjian, "Backscattering cross sections of circular disks for arbitrary incidence," J. Appl. Phys., Vol. 42, 3075, 1971.

    20. Le Vine, D. M., A. Schneider, R. H. Lang, and H. G. Carter, "Scattering from thin dielectric disks," IEEE Trans. Antennas. Propag., Vol. 33, 1410, 1985.

    21. Venner, M. J. and C. W. Bruce, "Absorption cross section of moderately conducting disks at 35 GHz," Appl. Opt., Vol. 37, No. 30, 7143, 1998.

    22. Mie, G., Annalen der Physik, Vol. 330, No. 3, 377, 1908.

    23. Bohren, F. C. and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, Wiley- Interscience, New York, 2010.

    24. Van de Hulst, H. C., "Light Scattering by Small Particles," John Wiley and Sons, New York, 1957.

    25. Gustafsson, M., C. Sohl, and G. Kristensson, "On the spectral efficiency of a sphere," Proc. R. Soc. A, Vol. 463, 2589, 2007.

    26. Qiu, W., B. G. Delacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Optimization of broadband optical response of multilayer nanospheres," Opt. Express, Vol. 20, 18494, 2012.

    27. Miller, O. D., A. G. Polimeridis, M. T. H. Reid, C. W. Hsu, B. G. Delacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to optical response in absorptive systems," Optics Express, Vol. 24, No. 4, 2016.

    28. Miller, O. D., C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Physical Review Letters, Vol. 112, 123903, 2014.

    29. Hlaing, M., B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C.-Y. Lai, "Absorption and scattering cross-section extinction values of silver nanoparticles," Optical Materials, Vol. 58, 439-444, 2016.

    30. Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, "Optically resonant dielectric nanostructures," Science, Vol. 354, 2472, 2016.

    31., Optical Constants of Bulk Materials and Films, Adam Hilger, 1988.

    32. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099, 1983.

    33., , https://refractiveindex.info/Aspnes and Studna 1983.