Vol. 87
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-30
Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization
By
Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019
Abstract
A metamaterial absorber in the Terahertz (THz) range is simulated and experimentally investigated in this work. The desired absorption frequency, efficiency and bandwidth can be tuned by changing the metal and dielectric geometric parameters. An absorption greater than 85% for TM polarized light with an incident angle up to 70˚ at any azimuthal direction is observed in a circular disc THz metamaterial structure. By adjusting the dielectric silicon dioxide (SiO2) thickness to 4 μm, an optimal absorption greater than 95% can be achieved at a resonance frequency of 0.97 THz. The experimental results also indicate that using Titanium (Ti) as a metamaterial metal layer provides four times broader absorption bandwidth than Aluminium (Al). This study, which works on polarization-insensitive and wide-angle metamaterial absorbers, can be fundamentally applied tomany THz applications including THz spectroscopy, imaging, and detection.
Citation
Khwanchai Tantiwanichapan, Anucha Ruangphanit, Wittawat Yamwong, Rattanawan Meananeatra, Arckom Srihapat, Jia Yi Chia, Napat Cota, Kiattiwut Prasertsuk, Patharakorn Rattanawan, Chayut Thanapirom, Rungroj Jintamethasawat, Kittipong Kasamsook, and Nipapan Klunngien, "Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization," Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019.
doi:10.2528/PIERM19081605
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

2. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterial," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.
doi:10.2528/PIER10112303

3. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Phys. Rev. B, Vol. 73, 033108, 2006.
doi:10.1103/PhysRevB.73.033108

4. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of doublenegative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502

5. Lee, Y., S. J. Kim, H. Park, and B. Lee, "Metamaterials and metasurfaces for sensor applications," Sensors, Vol. 17, 1726, 2017.
doi:10.3390/s17081726

6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

7. Alitalo, P., C. A. Valagiannopoulos, and S. A. Tretyakov, "Simple cloak for antenna blockage reduction," IEEE Int. Antennas Propag. Symposium, 2011.

8. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Opt. Mater., Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002

9. Xu, W., L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, "Gold nanoparticle-based terahertz metmaterial sensors: Mechanisms and applications," ACS Photonics, Vol. 3, 2308-2314, 2016.
doi:10.1021/acsphotonics.6b00463

10. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L.-L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," J. Appl. Phys., Vol. 117, 014504, 2015.
doi:10.1063/1.4905261

11. Escorcia, I., J. Grant, J. Gough, and D. R. Cumming, "Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode," Opt. Lett., Vol. 41, 3261-3264, 2016.
doi:10.1364/OL.41.003261

12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

13. Tao, H., E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, "Microwave and terahertz wave sensing with metamaterials," Opt. Express, Vol. 19, 21620, 2011.
doi:10.1364/OE.19.021620

14. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER11022307

15. Ding, F., J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, "Broadband near-infrared metamaterial absorbers utilizing highly lossy metals," Scientific Reports, Vol. 6, Article number: 39445, 2016.

16. Liu, Y., S. Gu, and C. Luo, "Ultra-thin broadband metamaterial absorber," Appl. Phys. A, Vol. 108, 19-24, 2012.
doi:10.1007/s00339-012-6936-0

17. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181, 2008.
doi:10.1364/OE.16.007181

18. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
doi:10.1063/1.3276072

19. Cheng, Y. H., M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, "Ultrathin sixband polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves," Materials, Vol. 10, No. 6, 591, 2017.
doi:10.3390/ma10060591

20. Huang, M., Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, "Based on graphene tunable dual-band terahertz metamaterial with wide-angle," Opt. Commun., Vol. 415, 194-201, 2018.
doi:10.1016/j.optcom.2018.01.051

21. Luo, H. and Y. Cheng, "Dual-band terahertz perfect metasurface absorber based on bi-layered all dielectric resonator structure," Opt. Mater., Vol. 96, 109279, 2019.
doi:10.1016/j.optmat.2019.109279

22. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "A single-patterned five-band terahertz metamaterial absorber based on multiple resonance mechanisms," Mod. Phys. Lett. B, Vol. 32, 1850029, 2018.
doi:10.1142/S021798491850029X

23. Wang, B. X., G. Z. Wang, and L. L. Wang, "Design of a novel dual-band terahertz metamaterial absorber," Plasmonics, Vol. 11, 523-530, 2016.
doi:10.1007/s11468-015-0076-2

24. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.
doi:10.1063/1.4929449

25. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.
doi:10.1063/1.4890521

26. Wen, Y., W. Ma, J. Bailey, G. Matmon, and X. Yu, "Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption," IEEE Trans. on Terahertz Science and Technology, Vol. 5, 406-411, 2015.
doi:10.1109/TTHZ.2015.2401392

27. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches," Eur. Phys. J. B, Vol. 86, 2013.
doi:10.1140/epjb/e2013-40210-5

28. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "An ultra-broadband terahertz metamaterial absorber based on split ring array and island-shape structures," Mod. Phys. Lett. B, Vol. 32, 1850189, 2018.
doi:10.1142/S0217984918501890

29. Cheng, Y., R. Gong, and Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Opt. Commun., Vol. 361, 41-46, 2016.
doi:10.1016/j.optcom.2015.10.031

30. Cheng, Y., R. Gong, and J. Zhao, "A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves," Opt. Mater., Vol. 62, 28-33, 2016.
doi:10.1016/j.optmat.2016.09.042

31. Huang, M. L., Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene," Materials, Vol. 11, No. 4, 540, 2018.
doi:10.3390/ma11040540

32. Li, D., H. Huang, H. Xia, J. Zeng, H. Li, and D. Xie, "Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator," Results Phys., Vol. 11, 659-664, 2018.
doi:10.1016/j.rinp.2018.10.014

33. Zhou, S., Z. Shen, R. Kang, S. Ge, and W. Hu, "Liquid crystal tunable dielectric metamaterial absorber in the terahertz range," Appl. Sci., Vol. 8, 2211, 2018.
doi:10.3390/app8112211

34. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476, 2011.
doi:10.1364/OL.36.003476

35. Hu, F., L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, "Design of polarization insensitive multiband terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 46, 2013.

36. Valagiannopoulos, C. A., A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and R. Simovski, "Perfect magnetic mirror and simple perfect absorber in the visible spectrum," Phys. Rev. B, Vol. 91, 115305, 2015.
doi:10.1103/PhysRevB.91.115305

37. Papadimopoulos, A. N., N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, "Wide-angle absorption of visible light from simple bilayers," Appl. Optics, Vol. 56, 9779-9786, 2017.
doi:10.1364/AO.56.009779

38. Ra’di, Y., V. S. Asadchy, and S. A. Tretyakov, "Total absorption of electromagnetic waves in ultimately thin layers," IEEE Trans. Antennas Propag., Vol. 61, 4606-4614, 2013.
doi:10.1109/TAP.2013.2271892

39. Tagay, Z. and C. Valagiannopoulos, "Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles," Phys. Rev. B, Vol. 98, 115306, 2018.
doi:10.1103/PhysRevB.98.115306

40. Nefedov, I. S., C. A. Valagiannopoulos, and L. A. Melnikov, "Perfect absorption in graphene multilayers," J. Opt., Vol. 15, 114003, 2013.
doi:10.1088/2040-8978/15/11/114003

41. Lei, L., S. Li, H. Huang, K. Tao, and P. Xu, "Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial," Opt. Express, Vol. 26, 5686, 2018.
doi:10.1364/OE.26.005686