Vol. 86
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-31
Optimization of Quasi-Constant Mutual Inductance of Asymmetrical Coils with Lateral Misalignment in Wireless Power Transfer System
By
Progress In Electromagnetics Research M, Vol. 86, 103-114, 2019
Abstract
In the wireless power transfer system (WPT) via magnetically coupled resonance, the lateral misalignment between the transmission coil and the receiving coil may affect the mutual inductance, then the transfer efficiency may be decreased, and the output power may be fluctuated, which lead to an unstable system. In this paper, a calculation method of the mutual inductance of an asymmetrical two-coil structure is presented. Based on the mutual inductance calculation method, an optimization method of quasi-constant mutual inductance is proposed. The key parameters of each coil can be obtained by using the proposed method. The mutual inductance can be kept constant when the misalignment is changed. And the output voltage and efficiency are also nearly constant with different misalignments. Finally, the setup of the asymmetric two-coil WPT system via magnetically coupled resonance is designed. Calculation, simulation, and experimental results validating the proposed method are given.
Citation
Zhongqi Li, Jing Li, Jiliang Yi, Wuxian Liao, and Min Zhang, "Optimization of Quasi-Constant Mutual Inductance of Asymmetrical Coils with Lateral Misalignment in Wireless Power Transfer System," Progress In Electromagnetics Research M, Vol. 86, 103-114, 2019.
doi:10.2528/PIERM19080201
References

1. Huang, X. L., W. Wang, and L. L. Tan, "Technical progress and application development of magnetic coupling resonant wireless power transfer," Automatic of Electric Power Systems, Vol. 41, No. 2, 2−14+141, 2017.

2. Li, S. Q. and C. C. Mi, "Wireless power transfer for electric vehicle applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453

3. Zhu, W. J. and S. Y. Gao, "Wireless power supply method for multi-rail-based electric vehicles," Automatic of Electric Power Systems, Vol. 40, No. 18, 97-101, 2016.

4. Li, H., J. Li, K. Wang, et al. "A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling," IEEE Transactions on Power Electronics, Vol. 30, No. 7, 3998-4008, 2015.
doi:10.1109/TPEL.2014.2349534

5. Fang, Z. J., J. H. Wang, S. X. Duan, et al. "Control of an LLC resonant converter using load feedback linearization," IEEE Transactions on Power Electronics, Vol. 33, No. 1, 887-898, 2018.
doi:10.1109/TPEL.2017.2672731

6. Shu, X. J. and B. Zhang, "A fractional-order method to reduce the resonant frequency of integerorder wireless power transmission system," Transactions of China Electrotechnical Society, Vol. 18, 83-89, 2017.

7. Xu, G. Z., C. X. Li, J. Zhao, et al. "Electromagnetic environment safety study of wireless electric vehicle charging," Transactions of China Electrotechnical Society, Vol. 22, 152-157, 2017.

8. Li, Y., Y. X. Zhang, Q. X. Yang, et al. "Analysis and experimental validation on maximum power and efficiency in wireless power transfer via coupled magnetic resonances," Transactions of China Electrotechnical Society, Vol. 31, No. 2, 18-24, 2016.

9. Zhao, J. B., T. Cai, S. X. Duan, et al. "A T-type high misalignment tolerant compensated topology for sectional track-based dynamic wireless power transmission system," Transactions of China Electrotechnical Society, Vol. 32, No. 18, 1-7, 2017.

10. Sample, A. P., B. H. Waters, S. T. Wisdom, et al. "Enabling seamless wireless power delivery in dynamic environments," Proceedings of the IEEE, Vol. 101, No. 4, 1343-1358, 2013.
doi:10.1109/JPROC.2013.2252453

11. Xia, C. Y., S. Y. Ren, R. Chen, et al. "Inductive power and signal synchronous transmission based on parallel paths of fundamental wave and harmonic wave," Automatic of Electric Power Systems, Vol. 42, No. 3, 1-7, 2018.

12. Choi, S. Y., B. W. Gu, S. Y. Jeong, et al. "Advances in wireless power transfer systems for roadwaypowered electric vehicles," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 18-36, 2015.
doi:10.1109/JESTPE.2014.2343674

13. Jow, U. M. and M. Ghovanloo, "Geometrical design of a scalable overlapping planar spiral coil array to generate a homogeneous magnetic field," IEEE Transactions on Magnetics, Vol. 49, No. 4, 2933-2945, 2013.
doi:10.1109/TMAG.2012.2235181

14. Waffenschmidt, E., "Homogeneous magnetic coupling for free positioning in an inductive wireless power system," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 226-233, 2015.
doi:10.1109/JESTPE.2014.2328867

15. Zhang, Z. and K. T. Chau, "Homogeneous wireless power transfer for move-and-charge," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6213-6220, 2015.
doi:10.1109/TPEL.2015.2414453

16. Lu, F., H. Zhang, H. Hofmann, et al. "A dynamic charging system with reduced output power pulsation for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 8, 6580-6590, 2016.
doi:10.1109/TIE.2016.2563380

17. Kim, J., H. Son, D. Kim, et al. "Efficiency of magnetic resonance WPT with two off-axis selfresonators," 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Ap, 127-130, 2011.

18. Koledintseva, M. Y., J. L. Drewniak, T. P. van Doren, D. J. Pommerenke, M. Cocchini, and D. M. Hockanson, "Mutual external inductance in stripline structures," Progress In Electromagnetics Research, Vol. 80, 349-368, 2008.
doi:10.2528/PIER07111503

19. Cui, H. M., Z. Y. Wang, S. L. Han, et al. "Analysis and design of multiphase receiver with reduction of output fluctuation for EV dynamic wireless charging system," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 4112-4124, 2019.
doi:10.1109/TPEL.2018.2859368