Vol. 85
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-02
Photovoltaic Driven Resonant Wireless Energy Transfer System for Implantable Electronic Sensor
By
Progress In Electromagnetics Research M, Vol. 85, 175-184, 2019
Abstract
In order to energize the biomedical implantable electronic devices wirelessly for in vivo health monitoring of patients in an isolated, outdoor and inaccessible environment, an alternate driving energy source is highly desirable. In pertinent to this, a photovoltaic driven wireless energizing system has been explored. The system is designed to convert solar energy to a high frequency energy source so as to facilitate energy transfer through resonant inductive link to the automated bio-medical sensing system allied with the receiver unit. The received power is observed to be 286 mW for the coil separation gap of 3 cm and load value of 40 Ω at the resonant frequency of 772.3 kHz. The automated biomedical smart sensor is competent to acquire the body parameter and transmit the consequent telemetry data from the body to the data recording segment. The real-time body temperature parameter of different living beings has been experimented, and to ensure the accuracy of the developed system, the observed parameter has been matched with a calibrated system. The proposed scheme can be suitable for monitoring wirelessly other in vivo health parameters such as blood pressure, bladder pressure, and physiological signals of the patients.
Citation
Biswaranjan Swain, Dipti Patnaik, Jayshree Halder, Praveen Priyaranjan Nayak, Durga Prasanna Kar, and Satyanarayan Bhuyan, "Photovoltaic Driven Resonant Wireless Energy Transfer System for Implantable Electronic Sensor," Progress In Electromagnetics Research M, Vol. 85, 175-184, 2019.
doi:10.2528/PIERM19073103
References

1. Rasouli, M. and S. Jay, "Energy sources and their developments for application in medical devices," Expert Review of Medical Devices, Vol. 7, 693-709, 2010.
doi:10.1586/erd.10.20

2. Puers, R. and G. Vandevoorde, "Recent progress on transcutaneous energy transfer for total artificial heart system," Artificial Organs, Vol. 25, 400-405, 2001.
doi:10.1046/j.1525-1594.2001.025005400.x

3. Kiourti, A., K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, "Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intra-cranial pressure monitoring," Progress In Electromagnetics Research, Vol. 141, 161-183, 2013.
doi:10.2528/PIER13051706

4. Wang, G., W. Liu, M. Sivaprakasam, and G. A. Kendir, "Design and analysis of adaptive transcutaneous power telemetry for biomedical implant," IEEE Trans. Circuits and System, Vol. 52, 2109-2117, 2005.
doi:10.1109/TCSI.2005.852923

5. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515

6. Shin, S. Y., B. Saravanakumar, A. Ramadoss, and S. J. Kim, "Fabrication of PDMS based triboelectric nanogenerator for self sustained power source application," Int. J. Energy Research, Vol. 40, 288-297, 2015.
doi:10.1002/er.3376

7. Ozeri, S. and Shmilovit, "Ultrasonic transcutaneous energy transfer for powering implanted devices," Ultrasonics, Vol. 50, 556-559, 2010.
doi:10.1016/j.ultras.2009.11.004

8. Swain, B., P. P. Nayak, D. P. Kar, S. Bhuyan, and L. P. Mishra, "Wireless energizing system for an automated implantable sensor," Review of Scientific Instruments, Vol. 87, 074708, 2016.
doi:10.1063/1.4959269

9. Smith, S., T. Tang, and J. Terry, "Development of a miniaturised drug delivery system with wireless power transfer and communication," Inst. Eng. Technol. Nanobiotechnol., Vol. 1, 80-86, 2007.

10. Ghovanloo, M. and K. Najafi, "A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture," IEEE Trans. Neural Syst. Rehab. Eng., Vol. 15, 449-457, 2007.
doi:10.1109/TNSRE.2007.903970

11. Riistama, J., J. Vaisanen, S. Heinisuo, H. Harjunpa, S. Arra, K. Kokko, M. Antyla, J. Kaihilahti, P. Heino, M. Kellomaki, O. Vainio, J. Vanhala, J. Lekkala, and J. Hyttinen, "Wireless and inductively powered implant for measuring electrocardiogram," Med. Bio. Eng. Comput., Vol. 45, 1163-1174, 2007.
doi:10.1007/s11517-007-0264-0

12. Ram Rakhyani, A., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

13. Swain, B., P. P. Nayak, D. P. Kar, and S. Bhuyan, "Thermal energy based resonant inductively coupled wireless energization method for implantable biomedical sensor," Progress In Electromagnetics Research M, Vol. 67, 129-136, 2018.
doi:10.2528/PIERM18011603

14. Bhuyan, S., S. K. Panda, K. Sivananda, and R. Kumar, "A compact resonace-based wireless energy transfer system for implanted electronic devices," International Conference on Energy, Automation and Signal, 1-3, 2011.

15. Ghanad, M. A., M. Green, and C. Dehollain, "A 30 μW remotely powered local temperature monitoring implantable system," IEEE Transcations on Biomedical Circuits and Systems, Vol. 11, 54-63, 2017.
doi:10.1109/TBCAS.2016.2574895

16. Kar, D. P., S. S. Biswal, P. K. Sahoo, P. P. Nayak, and S. Bhuyan, "Selection of maximum power transfer region for resonant inductively coupled wireless charging system," AEU - International Journal of Electronics and Communications, Vol. 84, 84-92, 2018.
doi:10.1016/j.aeue.2017.11.023

17. Ayazian, A., V. A. Akhavan, E. Soenen, and A. Hassibi, "A photovoltaic-driven and energy autonomous CMOS implantable sensor," IEEE Transactions on Biomedical Circuits and Systems, Vol. 6, 336-343, 2012.
doi:10.1109/TBCAS.2011.2179030

18. Rashid, M. H., "Power Electronic Circuits Devices and Application," Pearson, 2010.

19. Hart, D. W., Power Electronics, McGraw-Hill, New York, 2011.