Vol. 85
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-20
Design of a Four-Element MIMO Antenna with Low Mutual Coupling in a Small Size for Satelitte Applications
By
Progress In Electromagnetics Research M, Vol. 85, 95-104, 2019
Abstract
In this paper, a compact planar mono-band multiple input multiple output (MIMO) antenna with four monopole elements is presented for X-band satellite applications (7.2-7.8 GHz). The MIMO antenna resonates at 7.5 GHz, with high isolation (more than 26 dB) between its ports. It consists of a four closely arranged symmetric monopole antennas with edge-to-edge distance of 7.2 mm (0.18λ). In the top face, different forms are loaded at the rectangular patch. U slot defected ground structure (DGS) has embedded in the ground plane. The prototype of the proposed MIMO antenna is simulated, fabricated and measured to examine the performance of this antenna in terms of S parameters, radiation patterns, the envelope of correlation coefficient (ECC) and the diversity gain (DG). As a result, the presented antenna has a high isolation (S12 < -26 dB) at 7.5 GHz with impedance bandwidths is about 430 MHz (7.28 GHz-7.71 GHz), which covers the X-band applications. The diversity gain is about 10, and the envelope correlation coefficient of antenna is less than 0.02 which means that the antenna has high performance at the resonance frequency.
Citation
Aziz Dkiouak, Alia Zakriti, Mohssine El Ouahabi, Naima Amar Touhami, and Aicha Mchbal, "Design of a Four-Element MIMO Antenna with Low Mutual Coupling in a Small Size for Satelitte Applications," Progress In Electromagnetics Research M, Vol. 85, 95-104, 2019.
doi:10.2528/PIERM19071202
References

1. Soltani, S. and R. D. Murch, "A compact planar printed MIMO antenna design," IEEE Trans. Antennas Propag., Vol. 63, 1140-1149, 2015.
doi:10.1109/TAP.2015.2389242

2. Ahmed, B. T., P. S. Olivares, J. L. M. Campos, and F. M. Vázquez, "3.1-20 GHz MIMO antennas," AEU - International Journal of Electronics and Communications, Vol. 94, 348-358, 2018.
doi:10.1016/j.aeue.2018.07.026

3. Lo, T. K. and Y. Hwang, "Microstrip antennas of very high permittivity for personal communications," 1997 Asia Pacific Microwave Conference, 253-256, 1997.

4. Yang, B., M. Chen, and L. Li, "Design of a four-element WLAN/LTE/UWB MIMO antenna using half-slot structure," International Journal of Electronics and Communications, Vol. 93, 354-359, 2018.
doi:10.1016/j.aeue.2018.05.034

5. Acharjee, J., K. Mandal, and S. K. Mandal, "Reduction of mutual coupling and cross-polarization of a MIMO/diversity antenna using a String of H-shaped DGS," AEU - International Journal of Electronics and Communications, Vol. 97, 110-119, 2018.
doi:10.1016/j.aeue.2018.09.037

6. Manouare, A. Z., S. Ibnyaich, A. El Idrissi, and A. Ghammaz, "Miniaturized triple wideband CPW-fed patch antenna with a defected ground structure for WLAN/WiMAX applications," Journal of Microwaves, Ptoelectronics and Electromagnetic Applications, Vol. 15, No. 3, 157-169, Sep. 2016.
doi:10.1590/2179-10742016v15i3497

7. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal Defected Ground Structure (DGS) for high isolation and triple bandnotch characteristic," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 15, 1550-1565, 2017.
doi:10.1080/09205071.2017.1354727

8. Kamal, S. and A. A. Chaudhari, "Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications," Progress In Electromagnetics Research C, Vol. 71, 149-159, 2017.
doi:10.2528/PIERC16112008

9. Bhadouria, A. S. and M. Kumar, "Microstrip X-band antenna with improvement in performance using DGS," Electrical and Electronic Engineering, Vol. 4, No. 2, 31-35, 2014.

10. Kumar, N. and U. K. Kommuri, "MIMO antenna mutual coupling reduction for WLAN using spiro meander line UC-EBG," Progress In Electromagnetics Research C, Vol. 80, 65-77, 2018.
doi:10.2528/PIERC17101601

11. Dabas, T., D. Gangwar, B. K. Kanaujia, and A. K. Gautam, "Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands," AEU - International Journal of Electronics and Communications, Vol. 93, 32-38, 2018.
doi:10.1016/j.aeue.2018.05.033

12. Wu, W., B. Yuan, and A. Wu, "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," International Journal of Antennas and Propagation, Vol. 2018, 10 pages, 2018.

13. Lee, Y., H. Chung, J. Ha, and J. Choi, "Design of a MIMO antenna with improved isolation using meta-material," International Journal of Antennas and Propagation, 231-234, Mar. 2011.

14. Chen, X., B. Feng, Q. Zeng, and K. L. Chung, "A substrate integrated magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-BAND applications," 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, Oct. 30-Nov. 2, 2017.

15. Nirdosh, C. M. Tan, and M. R. Tripathy, "A miniaturized T-shaped MIMO antenna for X-band and Ku-band applications with enhanced radiation efficiency," 2018 27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, Apr. 30-May 1, 2018.

16. Nirdosh, A. Kakkar, and S. Sah, "A two-element wideband MIMO antenna for X band, Ku-band, K-band applications," 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, Feb. 22-23, 2018.

17. Sun, D. and C. Wei, "Analysis and design of 4 × 4 MIMO-antenna systems in mobile phone," Journal of Computer and Communications, 26-33, 2016.
doi:10.4236/jcc.2016.42004

18. Kumari, T., G. Das, A. Sharma, and R. Kumar, "Design approach for dual element hybrid MIMO antenna arrangement for wideband applications," Int. J. RF Microwave Computer Aided Eng., 1-10, 2018.

19. Wang, Z., L. Zhao, Y. Cai, S. Zheng, and Y. Yin, "A Meta-surface Antenna Array Decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system," Scientific Reports, 1-9, 2018.

20. Zhang, J., J. Ou Yang, K. Z. Zhang, and F. Yang, "A novel dual-band MIMO antenna with lower correlation coefficient," International Journal of Antennas and Propagation, Vol. 2012, Article ID 512975, 7 pages, 2012.

21. Pierce, J. N. and S. Stein, "Multiple diversity with non independent fading," Proceedings of the IRE, Vol. 48, 89-104, Jan. 1960.
doi:10.1109/JRPROC.1960.287384

22. Schwartz, M., W. R. Bennett, and S. Stein, Communication System and Techniques, 470-474, McGraw-Hill, New York, 1965.

23. Vasu Babu, K. and B. Anuradha, "Tri-band MIMO antenna for WLAN, WiMAX and defence system & radio astronomy applications," Advanced Electromagnetics, Vol. 7, No. 2, Mar. 2018.

24. Satam, V. and S. Nema, "Defected ground structure planar dual element MIMO antenna for wireless and short range RADAR application," 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, India, Feb. 19-21, 2015.

25. Pouyanfar, N., C. Ghobadi, J. Nourinia, K. Pedram, and M. Majidzadeh, "A compact multiband MIMO antenna with high isolation for C and X bands using defected ground structure," Radioengineering, Vol. 27, No. 3, 686-693, 2018.
doi:10.13164/re.2018.0686

26. Sarkar, D. and K. V. Srivastava, "A compact four-element MIMO/diversity antenna with enhanced bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2469-2472, 2017.
doi:10.1109/LAWP.2017.2724439

27. Ghosh, C. K., "A compact 4-channel microstrip MIMO antenna with reduced mutual coupling," AEU - International Journal of Electronics and Communications, Vol. 70, No. 7, 873-879, Jul. 2016.
doi:10.1016/j.aeue.2016.03.018