Vol. 85
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-05
Research on Control of Permanent Magnet Synchronous Motor Based on Second-Order Sliding Mode
By
Progress In Electromagnetics Research M, Vol. 85, 11-20, 2019
Abstract
In this paper, a control strategy based on second-order sliding mode is proposed for a permanent magnet synchronous motor (PMSM) drive system applying direct torque control with space vector modulation (DTC-SVM). This control strategy combines the principles of super-twisting algorithms, direct torque control, and space vector modulation, designed to overcome some obvious shortcomings, such as the large ripple of flux linkage and torque in traditional DTC, the poor robustness of traditional PI controllers, and the chattering of traditional sliding mode control. It gives the system good steady state and dynamic performance. The results show that the proposed method effectively solves the above shortcomings. Meanwhile, the control strategy effectively accelerates the dynamic response ability of the system and improves the robustness to parameter perturbation.
Citation
Yukun Sun, Qiang Cui, and Ye Yuan, "Research on Control of Permanent Magnet Synchronous Motor Based on Second-Order Sliding Mode," Progress In Electromagnetics Research M, Vol. 85, 11-20, 2019.
doi:10.2528/PIERM19070201
References

1. Shankar, V. K. A., S. Umashankar, and S. Paramasivam, "Investigations on performance evaluation of VFD fed PMSM using DTC control strategies for pumping applications," Conference on Innovations in Power and Advanced Computing Technologies, Apr. 2017.

2. Niu, F., B. S. Wang, A. S. Babel, K. Li, and E. G. Strangas, "Comparative evaluation of direct torque control strategies for permanent magnet synchronous machines," IEEE Transactions on Power Electronics, Vol. 31, No. 2, 1408-1424, Feb. 2016.
doi:10.1109/TPEL.2015.2421321

3. Zhu, H. Q. and Y. Xu, "Development of bearingless permanent magnet synchronous motor system and key technologies," Proceedings of the CSEE, Nov. 28, 2018.

4. Bida, V. M., D. V. Samokhvalov, and F. S. Al-Mahturi, "PMSM vector control techniques - A survey," IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, Jan. 2018.

5. Yuan, T. Q. and D. Z. Wang, "Performance improvement for PMSM DTC system through composite active vectors modulation," Electronics, Vol. 7, No. 10, Oct. 2018.

6. Zhang, Y., J. Zhu, W. Xu, et al. "A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle," IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, 2848-2859, 2011.
doi:10.1109/TIE.2010.2076413

7. Niu, F. and K. Li, "Direct torque control for permanent magnet synchronous machines based on duty ratio modulation," IEEE Transactions on Industrial Electronics, Vol. 62, No. 10, 6160-6170, 2015.
doi:10.1109/TIE.2015.2426678

8. Zhang, Z., C. Wei, W. Qiao, et al. "Adaptive saturation controller-based direct torque control for permanent magnet synchronous machines," IEEE Transactions on Power Electronics, Vol. 31, No. 10, 7112-7122, 2016.

9. Xiao, M., T. Shi, Z. Wang, et al. "Direct torque control for permanent magnet synchronous motor with multilevel hysteresis controller," Proceedings of the CSEE, Vol. 37, No. 14, 4201-4211, 2017.

10. Atallah, A. M. and E. I. Tantawy, "Direct torque control of machine side multilevel converter for variable speed wind turbines," Energy, Vol. 90, 1091-1099, Oct. 2015.

11. Islam, M. D., C. M. F. S. Reza, and S. Mekhilef, "Modeling and experimental validation of 5-level hybrid H-bridge multilevel inverter fed DTC-IM drive," Journal of Electrical Engineering & Technology, Vol. 10, No. 2, 574-585, Mar. 2015.
doi:10.5370/JEET.2015.10.2.574

12. Lakshmi, G. S. and K. Navya, "Multilevel diode-clamped inverter fed IPMSM drive for electric traction," International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology, Feb. 2017.

13. Qiu, X., W. Huang, J. Yang, and F. Bu, "A direct torque control strategy based on torque angle for permanent magnet synchronous motors," Transactions of China Electrotechnical Society, Vol. 28, No. 10, 56-62, Mar. 2013.

14. Cristian, L., B. Ion, and B. Frede, "Comparative analysis of direct torque control and DTC based on sliding mode control for PMSM drive," 29th Chinese Control and Decision Conference, May 2017.

15. Fan, Y., X. F. Zhou, X. Y. Zhang, L. Zhang, and M. Cheng, "Sliding mode control of IPMSM system based on a new reaching law and a hybrid speed controller," Transactions of China Electrotechnical Society, Vol. 32, No. 5, 9-18, 2017.

16. Zhang, X. G., K. Zhao, L. Sun, et al. "Sliding mode control of permanent magnet synchronous motor based on a novel exponential reaching law," Proceedings of the CSEE, Vol. 31, No. 15, May 2011.

17. Shi, S., S. Y. Xu, B. Y. Zhang, Q. Ma, and Z. Q. Zhang, "Global second-order sliding mode control for nonlinear uncertain systems," International Journal of Robust and Nonlinear Control, Vol. 29, No. 1, 224-237, Jan. 2019.
doi:10.1002/rnc.4385

18. Orlov, Y., A. Pisano, S. Scodina, and E. Usai, "On the Lyapunov-based second-order SMC design for some classes of distributed parameter systems," IMA Journal of Mathematical Control and Information, Vol. 29, No. 4, 437-457, Dec. 2012.
doi:10.1093/imamci/dns003

19. Castillo, I., L. Fridman, and J. A. Moreno, "Super-Twisting Algorithm in presence of time and state dependent perturbations," International Journal of Control, Vol. 91, No. 11, 2535-2548, Nov. 2018.
doi:10.1080/00207179.2016.1269952

20. Gonzalez, J. A., A. Barreiro, S. Dormido, and A. Banos, "Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance," Journal of the Franklin Institute - Engineering and Applied Mathematics, Vol. 354, No. 7, 2788-2815, May 2017.
doi:10.1016/j.jfranklin.2017.01.025

21. Zeng, X. F., J. Y. Wang, X. H. Wang, and T. J. Wang, "Design of sliding mode controller based on SMDO and its application to missile control," Acta Aeronautica ET Astronautica Sinica, Vol. 32, No. 5, May 2011.