Vol. 85
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-17
Analysis of Electromagnetic Vibration and Noise Characteristics of Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research M, Vol. 85, 83-94, 2019
Abstract
The vibration and noise problems caused by the radial electromagnetic force of the Bearingless Switched Reluctance Motor (BSRM) severely restrict its wide application. The purpose of this paper is to research the electromagnetic vibration and noise of Single-Winding Bearingless Switched Reluctance Machine (SWBSRM). Firstly, the radial electromagnetic force, which is the excitation source of electromagnetic vibration, is analyzed. Secondly, the three-dimensional (3D) model of stator structure is established by ANSYS finite element analysis (FEA) software, and its modal analysis is carried out to obtain its modal shape and corresponding modal frequency, which provides a reference and basis for researching the mechanical vibration of the SWBSRM. Finally, the harmonic response field analysis and sound field analysis model are established, and the vibration and noise of the motor under radial electromagnetic force are analyzed by using the magnetic-solid weak coupling analysis method.
Citation
Yonghong Huang, Chi Chen, Ye Yuan, Fengxiao Huang, Qianwen Xiang, and Fan Yang, "Analysis of Electromagnetic Vibration and Noise Characteristics of Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research M, Vol. 85, 83-94, 2019.
doi:10.2528/PIERM19061302
References

1. Liaw, C. M., K. W. Hu, J. C. Wang, et al. "Development and operation control of a switched-reluctance motor driven flywheel," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 526-537, 2018.

2. Takemoto, M., A. Chiba, H. Akagi, et al. "Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation," IEEE Transactions on Industry Applications, Vol. 1, No. 1, 103-112, 2002.
doi:10.1109/TIA.2003.821816

3. Yuan, Y., Y. Sun, and Y. Huang, "Design and analysis of bearingless flywheel motor specially for flywheel energy storage," Electronics Letters, Vol. 52, No. 1, 66-68, 2015.
doi:10.1049/el.2015.1938

4. Wu, C. Y. and C. Pollock, "Time domain analysis of vibration and acoustic noise in the switched reluctance drive," IEE Sixth International Conference on Electrical Machines and Drives, 558-563, London, UK, 1993.

5. Callegaro, A. D., J. Liang, J. W. Jiang, et al. "Radial force density analysis of switched reluctance machines: The source of acoustic noise," IEEE Transactions on Transportation Electrification, Vol. 5, No. 1, 93-106, 2018.
doi:10.1109/TTE.2018.2887338

6. Sun, J., Q. Zhan, S. Wang, et al. "A novel radiating rib structure in switched reluctance motors for low acoustic noise," IEEE Transactions on Magnetics, Vol. 43, No. 9, 3630-3637, 2007.
doi:10.1109/TMAG.2007.902604

7. Sun, J. B., "A novel control strategy of switched reluctance motor contributing to low vibrative noise and minimal torque ripple," Proceedings of the Csee, Vol. 28, No. 12, 134-138, 2008.

8. Li, J., X. Song, and Y. Cho, "Comparison of 12/8 and 6/4 switched reluctance motor: Noise and vibration aspects," IEEE Transactions on Magnetics, Vol. 44, No. 11, 4131-4134, 2008.
doi:10.1109/TMAG.2008.2002533

9. Zhang, J. J., R. Long, H. J. Zhang, et al. "Analytical and FEM modeling of electormagnetic radial force for switched reluctance motor," Applied Mechanics and Materials, Vol. 121-126, No. 4, 3765-3769, 2011.
doi:10.4028/www.scientific.net/AMM.121-126.3765

10. Sun, J. B., Q. H. Zhan, and J. Huang, "Modal analysis of stator vibration for switched reluctance motors," Proceedings of the Csee, Vol. 25, No. 22, 148-152, 2005.

11. Guo, X., R. Zhong, M. Zhang, et al. "Fast computation of radial vibration in switched reluctance motors," IEEE Transactions on Industrial Electronics, Vol. 65, No. 6, 4588-4598, 2017.
doi:10.1109/TIE.2017.2767548

12. Anwar, M. N. and I. Husain, "Radial force calculation and acoustic noise prediction in switched reluctance machines," IEEE Trans Industry Applications, Vol. 36, No. 6, 1589-1597, 2000.
doi:10.1109/28.887210

13. Yang, H. Y., Y. C. Lim, and H. C. Kim, "Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor," IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, 4292-4300, 2013.
doi:10.1109/TIE.2012.2217715

14. Castano, S. M., B. Bilgin, J. Lin, et al. "Radial forces and vibration analysis in an external-rotor switched reluctance machine," IET Electric Power Applications, Vol. 11, No. 2, 252-259, 2017.
doi:10.1049/iet-epa.2016.0197

15. Yang, Y., Z. Deng, X. Cao, et al. "Characteristic analysis of stator vibration for 12/8 bearingless switched reluctance motors," Journal of Nanjing University of Aeronautics & Astronautics, Vol. 42, No. 4, 494-500, 2010.

16. Wang, X., Q. Tan, X. Liu, et al. "Improved radial force modeling and rotor suspension dynamics simulation studies for double-winding bearingless switched reluctance motor," Electric Power Components and Systems, Vol. 45, No. 1, 111-120, 2017.
doi:10.1080/15325008.2016.1236852

17. Takemoto, M., A. Chiba, H. Akagi, et al. "Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation," IEEE Transactions on Industry Applications, Vol. 1, No. 1, 103-112, 2004.
doi:10.1109/TIA.2003.821816

18. Yang, G., Z. Deng, X. Cao, et al. "Optimal winding arrangements of a bearingless switched reluctance motor," IEEE Transactions on Power Electronics, Vol. 23, No. 6, 3056-3066, 2008.
doi:10.1109/TPEL.2008.2002070

19. Chen, L. and W. Hofmann, "Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2592-2600, 2012.
doi:10.1109/TIE.2011.2163289

20. Yuan, Y., Y. Sun, and Y. Huang, "Radial force dynamic current compensation method of single winding bearingless flywheel motor," IET Power Electronics, Vol. 8, No. 7, 1224-1229, 2015.
doi:10.1049/iet-pel.2014.0502