Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Electromagnetic Torque Ripple Minimization of Slotted Doubly-Salient-Permanent-Magnet Generator for Wind Turbine Applications

By Lemnouer Bekhouche, Rachid Saou, Cherif Guerroudj, Abdellah Kouzou, and Mohamed El-Hadi Zaim
Progress In Electromagnetics Research M, Vol. 83, 181-190, 2019


The aim of this work is to reduce the torque ripple of a low-speed/high-torque Doubly Salient Permanent Magnet (DSPM) generator for wind turbine applications. To do this, a combined design and control-based approaches are set up to improve the overall machine performance. The design-based approach helps to develop a form of small stator/rotor teeth combination, focusing on the shapes and dimensions of the teeth that will minimize torque ripple. On the other hand, in the second approach, a control technique is designed. It employs indirect torque control (Torque Sharing Function: TSF), including a PI-controller with gains adjusted continuously for regulating the reference current. The obtained results show that by combining these two approaches, the ripple rate of the electromagnetic torque for the studied DSPM is reduced to a minimum when the teeth shapes are trapezoidal in both the stator and rotor, and the command approach also allows an improvement in the total torque shape, such that the ripple rate decreases by about 96%.


Lemnouer Bekhouche, Rachid Saou, Cherif Guerroudj, Abdellah Kouzou, and Mohamed El-Hadi Zaim, "Electromagnetic Torque Ripple Minimization of Slotted Doubly-Salient-Permanent-Magnet Generator for Wind Turbine Applications," Progress In Electromagnetics Research M, Vol. 83, 181-190, 2019.


    1. Moreau, L., M. Machmoum, and M. E. Zaïm, "Design of low-speed slotted switched reluctance machine for wind energy applications," Ele. Pow. Comp. and Sys., Vol. 34, No. 10, 1139-1156, 2006.

    2. Saou, R., M. E. Zaïm, and K. Alitouche, "Optimal designs and comparison of the doubly salient permanent magnet machine and flux-reversal machine in low-speed applications," Power Components Syst., Vol. 36, No. 9, 914-931, 2008.

    3. Saou, R., M. E. Zaïm, and K. Alitouche, "Modelling and design of a low speed flux reversal machine," J. Electr. Syst. 2009, Vol. 36, No. 9, 18-23, 2009.

    4. Tarimer, I. and A. Sakar, "Effects of structural design of pole arc offset in a salient pole generator to obtaining sinusoidal voltages with the least harmonics," Przeglad Elektrotechniczny, Vol. 2010, No. 11a, 367-372, 2010.

    5. Tarimer, I. and E. O. Yuzer, "Designing of a permanent magnet and directly driven synchronous generator for low speed turbines," Ele. and Electrical Eng., Vol. 6, No. 112, 15-18, 2011.

    6. Rupar, U., F. Lahajnar, and P. Zajec, "Iterative-learning-based torque-ripple compensation in a transverse flux motor," IET Cont. Theo. App., Vol. 6, No. 3, 341-348, 2012.

    7. Shi, U. C., D. C. Yon, C. W. Byung, D. K. Hong, and J. Y. Lee, "Design considerations and validation of permanent magnet vernier machine with consequent pole rotor for low speed servo applications," J. Electr. Eng. Technol., Vol. 8, No. 5, 1146-1151, 2013.

    8. Topaloglu, I., C. Ocak, and I. Tarimer, "A case study of getting performance characteristics of a salient pole synchronous hydrogenerators," Elektronika ir Elektrotechnika, Vol. 97, No. 1, 57-61, 2015.

    9. Guerroudj, C., R. Saou, A. Boulayoune, E. M. Zaïm, and L. Moreau, "Performance analysis of Vernier slotted doubly salient permanent magnet generator for wind power," Int. J. Hyd. Ene., Vol. 42, No. 13, 8744-8755, Mar. 30, 2017.

    10. Ocak, C., D. Uygun, and I. Tarimer, "FEM based multi-criterion design and implementation of a PM synchronous wind generator by fully coupled co-simulation," Adv. in Ele. and Comp. Eng., Vol. 18, 37-42, 2018.

    11. Soong, W. L. and N. Ertugrul, "Field-weakening performance of interior permanent-magnet motors," IEEE Tran. on Indu. App., Vol. 38, No. 5, 1251-1258, 2002.

    12. Sahin, C., A. E. Amac, M. Karacor, and A. Emadi, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Ele. Pow. Appl., Vol. 6, No. 9, 753-760, 2012.

    13. Guerroudj, C., R. Saou, F. Charpentier, and A. Boulayoune, "Optimal design of a novel doubly salient permanent magnet motors for high power ship propulsion," 2018 XIII ICEM, 2556-2562, IEEE, Alexandroupoli, 2018.

    14. Jing, L. and J. Cheng, "Research on torque ripple optimization of switched reluctance motor based on finite element method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.

    15. Massimo, B., P. Tomas, and F. Ivano, "Low-torque ripple design of a ferrite-assisted synchronous reluctance motor," IET Ele. Pow. App. Spec., Vol. 10, No. 5, 319-329, 2016.

    16. Ketabi, A., A. Yadghar, and M. J. Navardi, "Torque and ripple improving of a SR motor using robust particle swarm optimization of drive current and dimension," Progress In Electromagnetics Research M, Vol. 45, 195-207, 2016.

    17. Moreau, L., M. Machmoum, and M. E. Zaim, "Control and minimization of torque ripple in switched reluctance generator," Eur. Conf. Power Electron. Appl., 1-8, Dresden, 2005.

    18. Xue, X. D., K. W. E. Cheng, and S. L. Ho, "A control scheme of torque ripple minimization for SRM drives based on flux linkage controller and torque sharing function," 2nd Int. Conf. Power Electron. Syst. Appl. ICPESA, 79-84, Hong Kong, 2006.

    19. Gobbi, R. and K. Ramar, "Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors," IET Ele. Pow. App., Vol. 3, No. 5, 453-460, 2009.

    20. Xia, Y. Y., J. E. Fletcher, S. J. Finney, K. H. Ahmed, and B. W. Williams, "Torque ripple analysis and reduction for wind energy conversion systems using uncontrolled rectifier and boost converter," IET Ren. Pow. Gen., Vol. 5, No. 5, 377-386, 2011.

    21. Hannoun, H., M. Hilairet, and C. Marchand, "High performance current control of a switched reluctance machine based on a gain-scheduling PI controller," Control Eng. Pract., Vol. 19, No. 11, 1377-1386, 2011.

    22. Korkmaz, F., I. Topaloğlu, H. Mamur, M. Ari, and I. Tarimer, "Reduction of torque ripple in induction motor by artificial neural multinetworks," Turk. J. Elec. Eng. & Comp. Sci., Vol. 24, 3492-3502, 2016.

    23. Milad, D., M. S. N. Seyed, and W. A. Jin, "Torque ripple minimization of switched reluctance motor using modified torque sharing function," 2013 21st Iran. Conf. Electr. Eng. ICEE 2013, 1-6, Mashhad, 2013.

    24. Lange, T., B. Kerdsup, C. Weiss, and R. W. De Doncker, "Torque ripple reduction in reluctance synchronous machines using an asymmetric rotor structure," 7th IET Int. Conf. PEMD 2014, 1-5, Manchester, 2014.

    25. Tahi, S., R. Ibtiouen, and S. Mekhtoub, "Performance optimization of synchronou reluctance machines with two rotor structures," ICEM 2014, 250-255, Berlin, 2014.