Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-07-29

Rainfall Rate Field Space-Time Interpolation Technique for North West Europe

By Guangguang Yang, David Ndzi, Kevin Paulson, Misha Filip, and Abdul-Hadi Al-Hassani
Progress In Electromagnetics Research M, Vol. 83, 93-107, 2019
doi:10.2528/PIERM19051608

Abstract

The ability to predict rain characteristics at small space-time scales is important, particularly in the planning, design, and deployment of wireless networks operating at frequencies above 10 GHz. For wide area networks, high space and time resolution rainfall data are often not available, and the cost of such measurements is prohibitive. This paper thus presents a new approach to address this problem using rain radar measurements to obtain rain estimates at finer resolutions than that available from the original measured data. This paper proposes three innovative methodologies: 1) the approach is not directly applied to measured rainfall rate data but focuses on the parameters of fitted lognormal distribution parameters and/or computed rain characteristics for each location; 2) to facilitate the application in wireless communication networks operating above 10 GHz, a set of databases and contour maps of rain parameters spanning North West Europe have been created. These conveniently and efficiently provide rain parameters for any location within the area under study; and 3) the proposed 3D space-time interpolation approach can extrapolate rain parameters at space-time resolutions that are shorter than those found in NIMROD radar databases. The results show that the approach presented in this paper can be used to provide {1 km, 5 mins} space-time rain rate resolution from {5 km, 15 mins} data for the whole North West Europe with error percentages of less than 4%. This is far superior to estimates provided by the International Telecommunication Union recommended model.

Citation


Guangguang Yang, David Ndzi, Kevin Paulson, Misha Filip, and Abdul-Hadi Al-Hassani, "Rainfall Rate Field Space-Time Interpolation Technique for North West Europe ," Progress In Electromagnetics Research M, Vol. 83, 93-107, 2019.
doi:10.2528/PIERM19051608
http://jpier.org/PIERM/pier.php?paper=19051608

References


    1. Panagopoulos, A. D. and J. D. Kanellopoulos, "On the rain attenuation dynamics: Spatial-temporal analysis of rainfall rate and fade duration statistics," International Journal of Satellite Communication and Networking, Vol. 21, No. 6, 595-611, 2003.
    doi:10.1002/sat.763

    2. Bell, T. L., "A space-time stochastic model of rainfall for satellite remote-sensing studies," J. Geophysical Research, Vol. 92, No. D8, 9631-9643, August 1987.
    doi:10.1029/JD092iD08p09631

    3. Grémont, B. C. and A. Tawfik, "Markov modelling of rain attenuation for satellite and terrestrial communications," 12th International Conference on Antennas and Propagation, 369-373, 2003.

    4. Paulson, K. S., C. Ranatunga, and T. Bellerby, "A method to estimate trends in distributions of 1 min rain rates from numerical weather prediction data," Radio Science, Vol. 50, 931-940, 2015.
    doi:10.1002/2015RS005651

    5. Voss, R. F., "Random fractal forgeries," Fundamental Algorithms for Computer Graphics, 805-835, Springer Berlin Heidelberg, 1985.

    6. Grémont, B. C. and M. Filip, "Spatio-temporal rain attenuation model for application to fade mitigation techniques," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1245-1256, 2004.
    doi:10.1109/TAP.2004.827501

    7. Pathirana, A., S. Herath, and T. Yamada, "Estimating rainfall distributions at high temporal resolutions using a multifractal model," Hydrology and Earth System Sciences Discussions, Vol. 7, No. 5, 668-679, 2003.
    doi:10.5194/hess-7-668-2003

    8. Venezian, D., R. L. Bras, and J. D. Niemann, "Nonlinearity and self-similarity of rainfall in time and a stochastic model," Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 101, No. D21, 26371-26392, 1996.
    doi:10.1029/96JD01658

    9. Paulson, K. S., "Fractal interpolation of rain rate time series," Journal of Geophysical Research: Atmospheres, Vol. 109, No. D22, November 27, 2004.

    10. Deidda, R., R. Benzi, and F. Siccardi, "Multifractal modeling of anomalous scaling laws in rainfall," Water Resource Research, Vol. 35, No. 6, 1853-1867, June 1999.
    doi:10.1029/1999WR900036

    11. Mandelbrot, B., "How long is the coast of Britain," Science, Vol. 156, No. 3775, 636-638, 1967.
    doi:10.1126/science.156.3775.636

    12. Lovejoy, S. and B. B. Mandelbrot, "Fractal properties of rain, and a fractal model," Tellus, Series A - Dynamic Meteorology and Oceanography, Vol. 37, 209-232, 1985.
    doi:10.1111/j.1600-0870.1985.tb00423.x

    13. Lovejoy, S. and D. Schertzer, "Fractals, raindrops and resolution dependence of rain measurements," Journal of Applied Meteorology, Vol. 29, No. 9, 1167-1170, 1990.
    doi:10.1175/1520-0450(1990)029<1167:FRARDO>2.0.CO;2

    14. Pathirana, A., S. Herath, and K. Musiake, "Scaling rainfall series with a multifractal model," Annual Journal of Hydraulic Engineering, Vol. 45, 295-300, 2001.
    doi:10.2208/prohe.45.295

    15. Gaume, E., N. Mouhous, and H. Andrieu, "Rainfall stochastic disaggregation models: Calibration and validation of a multiplicative cascade model," Advances in Water Resources, Vol. 30, No. 5, 1301-1319, 2007.
    doi:10.1016/j.advwatres.2006.11.007

    16. Wolfensberger, D., A. Gires, I. Tchiguirinskaia, and D. Schertzer, "Multifractal evaluation of simulated precipitation from the COSMO NWP model," Atmospheric Chemistry and Physics, Vol. 17, 14253-14273, 2017.
    doi:10.5194/acp-17-14253-2017

    17. De Lima, M. I. P. and J. I. M. P. de Lima, "Investigation the multifractality of point precipitation in the Madeira archipelago," Nonlinear Processes in Geophysics, Vol. 16, 299-311, 2009.
    doi:10.5194/npg-16-299-2009

    18. Deidda, R., "Rainfall downscaling in a space-time multifractal framework," Water Resources Research, Vol. 36, No. 7, 1779-1794, 2000.
    doi:10.1029/2000WR900038

    19. Taylor, G. I., "The spectrum of turbulence," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 164, No. 919, 476-490, February 1938.
    doi:10.1098/rspa.1938.0032

    20. Calenda, G., E. Gorgucci, F. Napolitano, A. Novella, and E. Volpi, "Multifractal analysis of radar rainfall fields over the area of Rome," Advances in Geosciences, Vol. 2, No. 2, 293-299, 2005.
    doi:10.5194/adgeo-2-293-2005

    21. Deidda, R., M. G. Badas, and E. Piga, "Space-time multifractality of remotely sensed rainfall fields," Journal of Hydrology, Vol. 322, No. 1-4, 2-13, 2006.
    doi:10.1016/j.jhydrol.2005.02.036

    22. Yang, X., X. Jie, D.-L. Liu, F. Ji, and L. Wang, "Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region," Advances in Meteorology, Vol. 2015, Article ID 563629, 12 pages, June 2015.

    23. Paulson, K. S. and X. Zhang, "The simulation of rain fade on arbitrary microwave link networks by the interpolation of rain radar data," Radio Science, Vol. 44, No. 2, April 2009.

    24. Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov, "Evidence of dynamic scaling in space-time rainfall," Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 104, No. D24, 31599-31610, 1999.
    doi:10.1029/1999JD900437

    25. Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov, "A space-time downscaling model for rainfall," Journal of Geophysical Research, Vol. 104, No. D4, 19705-19721, 1999.
    doi:10.1029/1999JD900338

    26. Deidda, R., M. G. Badas, and E. Piga, "Space-time multifractality of remotely sensed rainfall fields," Journal of Hydrology, Vol. 322, No. 1, 2-13, 2006.
    doi:10.1016/j.jhydrol.2005.02.036

    27. Yang, G., B. Gremont, D. Ndzi, and D. J. Brown, "Characterization of rain fields for UK satellite networks," Ka and Broadband Communications: Navigation and Earth Observation Conference, October 2011.

    28. Luini, L. and C. Capsoni, "The impact of space and time averaging on the spatial correlation of rainfall," Radio Science, Vol. 47, No. 3, 2012.
    doi:10.1029/2011RS004915

    29. Kundu, P. K. and T. L. Bell, "A stochastic model of space-time variability of mesoscale rainfall: Statistics of spatial averages," Water Resources Research, Vol. 39, No. 12, 2003.
    doi:10.1029/2002WR001802

    30. Yang, G., B. Gremont, L. Yang, M. Ibrahim, and L. Bai, "Space-time channel model for rain-affected communication networks," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4768-4776, 2019.
    doi:10.1109/TAP.2019.2907601

    31. Filip, M. and E. Vilar, "Optimum utilization of the channel capacity of a satellite link in the presence of amplitude scintillations and rain attenuation," IEEE Transactions on Communications, Vol. 38, No. 9, 1958-1965, 1990.
    doi:10.1109/26.61477

    32. International Telecommunication Union (ITU), "Characteristics of precipitation for propagation modelling,", ITU-R Recomm. P. 837-7, Geneva, 2017.

    33. Jeannin, G., G. Carrie, M. Rodrigues, L. Castanet, and F. Lacoste, "Study of rain attenuation space-time channel model for tropical and equatorial areas," EuCAP 2009, 1956-Berlin, Germany, March 23-27, 1960, 2009.

    34. Goldhirsh, J., B. H. Musiani, A. W. Dissanayake, and K.-T. Lin, "Three-site space-diversity experiment at 20 GHz using ACTS in the Eastern United States," Proceeding of IEEE, Vol. 85, 970-980, 1997.
    doi:10.1109/5.598419

    35. Keys, R. G., "Cubic convolution interpolation for digital image processing," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, No. 6, 1153-1160, 1981.
    doi:10.1109/TASSP.1981.1163711

    36. International Telecommunication Union (ITU), "Acquisition, presentation and analysis of data in studies of tropospheric propagation,", ITU-R Recomm. P. 311-14, Geneva, Switzerland, 2013.