Vol. 81
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-13
A CMOS Power Amplifier Using an Asymmetrical Input Transformer to Enhance the Gain for IEEE 802.11N WLAN Applications
By
Progress In Electromagnetics Research M, Vol. 81, 193-202, 2019
Abstract
In this study, we propose an asymmetrical input transformer for the input baluns in a differential RF CMOS power amplifier to minimize the loss induced by the input transformer. To reduce the loss caused by the magnetic coupling between the primary and secondary parts of a typical transformer, we modify the interconnection between the input transformer and the differential input of the driver stage. Unlike a typical transformer, the primary and secondary parts of the proposed transformer are directly connected to the input of the driver stage. As a result, the input signal in the primary part can reach one of the inputs of the differential driver stage, thereby reducing the loss caused by magnetic coupling. To verify the functionality of the proposed asymmetrical input transformer, we designed a 4.5-GHz differential CMOS power amplifier for IEEE 802.11n WLAN applications with 64-QAM, 9.6 dB PAPR, and a bandwidth of 20 MHz. The designed power amplifier is fabricated using the 180-nm SOI RF CMOS process. The measured maximum linear output power is 17.59 dBm with a gain of 29.23 dB.
Citation
Yonghun Sim, Jinho Yoo, Changhyun Lee, and Changkun Park, "A CMOS Power Amplifier Using an Asymmetrical Input Transformer to Enhance the Gain for IEEE 802.11N WLAN Applications," Progress In Electromagnetics Research M, Vol. 81, 193-202, 2019.
doi:10.2528/PIERM19040904
References

1. Lee, J.-H., W.-J. Jung, J.-W. Jung, J.-E. Jang, and J.-S. Park, "A matched RF charger for wireless RF power harvesting system," Microw. Opt. Technol. Lett., Vol. 57, 1622-1625, 2015.
doi:10.1002/mop.29183

2. Formato, R. A., "Variable Z0 antenna technology: A new approach for IoT wireless," Int. J. Microw. Wirel. Technol., Vol. 7, 195-203, 2015.
doi:10.1017/S1759078714000634

3. Jeong, H., G. Ko, H. Shin, I. Kang, J. Yoo, and C. Park, "A CMOS power amplifier using split input and output transformers to minimize its chip area," Microw. Opt. Technol. Lett., Vol. 58, 1443-1446, 2016.
doi:10.1002/mop.29829

4. Ryu, N., S. Jang, K. C. Lee, and Y. Jeong, "CMOS doherty amplifier with variable balun transformer and adaptive bias control for wireless LAN application," IEEE J. Solid-State Circuits, Vol. 49, 1356-1365, 2014.
doi:10.1109/JSSC.2014.2313561

5. Ryu, N., B. Park, and Y. Jeong, "A fully integrated high efficiency RF power amplifier for WLAN application in 40 nm standard CMOS process," IEEE Micro. Wirel. Compon. Lett., Vol. 25, 382-384, 2015.
doi:10.1109/LMWC.2015.2421351

6. Seo, D., S.-H. Lim, H.-J. Ahn, and C. Park, "1.9-GHz CMOS power amplifier using a current source to enhance its dynamic range," Microw. Opt. Technol. Lett., Vol. 56, 1886-1891, 2014.
doi:10.1002/mop.28473

7. Seo, D. and C. Park, "Split driver stages for a switching mode power amplifier with multipairs of power stages," Microw. Opt. Technol. Lett., Vol. 56, 2341-2345, 2014.
doi:10.1002/mop.28593

8. Hwang, H., C. Lee, J. Park, and C. Park, "A current-shared cascade structure with an auxiliary power regulator for switching mode RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 62, 2711-2722, 2014.
doi:10.1109/TMTT.2014.2356974

9. Park, J., C. Lee, and C. Park, "Study of stability problems due to the undesired coupling of a RF power amplifier using a distributed active transformer," Microelectron. J., Vol. 46, 1046-1052, 2015.
doi:10.1016/j.mejo.2015.09.011

10. Lee, C. and C. Park, "Switching-mode CMOS power amplifier using a differentially coupled series inductor," Progress In Electromagnetics Research Letters, Vol. 81, 59-64, 2019.

11. Choi, H., Y. Lee, and S. Hong, "A digital polar CMOS power amplifier with a 102-dB power dynamic range using a digitally controlled bias generator," IEEE Trans. Microw. Theory Tech., Vol. 62, 579-589, 2014.
doi:10.1109/TMTT.2014.2298386

12. Liu, G., P. Haldi, T.-J. K. Liu, and A. M. Niknejad, "Fully integrated CMOS power amplifier with efficiency enhancement at power back-off," IEEE J. Solid-State Circuits, Vol. 43, 600-609, 2008.
doi:10.1109/JSSC.2007.916585

13. Yang, H.-S., J.-H. Chen, and Y.-J. Chen, "A 1.2-V 90-nm fully integrated compact CMOS linear power amplifier using the coupled L-shape concentric vortical transformer," IEEE Trans. Microw. Theory Tech., Vol. 62, 2689-2699, 2014.
doi:10.1109/TMTT.2014.2352602

14. Yoon, Y., J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J. S. Kenney, "A dual-mode CMOS RF power amplifier with integrated tunable matching network," IEEE Trans. Microw. Theory Tech., Vol. 60, 77-88, 2012.
doi:10.1109/TMTT.2011.2175235

15. Ham, J., J. Bae, M. Seo, H. Lee, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Dual-mode supply modulator for CMOS envelope tracking power amplifier integrated circuit," Microw. Opt. Technol. Lett., Vol. 57, 1338-1343, 2015.
doi:10.1002/mop.29107

16. Kim, H., J. Bae, J. Ham, J. Gu, M. Seo, K. C. Hwang, K.-Y. Lee, C.-S. Park, and Y. Yang, "Efficiency enhanced CMOS digitally controlled dynamic bias switching power amplifier for LTE," Microw. Opt. Technol. Lett., Vol. 57, 2315-2321, 2015.
doi:10.1002/mop.29330

17. Kang, J., J. Yoon, K. Min, D. Yu, J. Nam, Y. Yang, and B. Kim, "A highly linear and efficient differential CMOS power amplifier with harmonic control," IEEE J. Solid-State Circuits, Vol. 41, 1314-1322, 2006.
doi:10.1109/JSSC.2006.874276

18. Yoo, J., C. Lee, I. Kang, M. Son, Y. Sim, and C. Park, "2.4-GHz CMOS linear power amplifier for IEEE 802.11n WLAN applications," Microw. Opt. Technol. Lett., Vol. 59, 546-550, 2017.
doi:10.1002/mop.30343

19. Yan, T., H. Liao, C. Li, and R. Huang, "A 2-GHz fully-differential CMOS power amplifier with virtual grounds to suppress ground bounce," Microw. Opt. Technol. Lett., Vol. 49, 2780-2784, 2007.
doi:10.1002/mop.22849

20. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE J. Solid-State Circuits, Vol. 37, 371-383, 2002.
doi:10.1109/4.987090

21. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., Vol. 50, 316-331, 2002.
doi:10.1109/22.981284

22. Guanella, G., "New method of impedance matching in radio frequency circuits," Brown Boveri Rev., Vol. 31, 327-329, 1944.

23. Park, C., D. H. Lee, J. Han, and S. Hong, "Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 55, 2034-2042, 2007.
doi:10.1109/TMTT.2007.905482

24. Afsahi, A., A. Behzad, V. Magoon, and L. E. Larson, "Linearized dual-band power amplifiers with integrated baluns in 65nm CMOS for a 2 × 2 802.11n MIMO WLAN SoC," IEEE J. Solid-State Circuits, Vol. 45, 955-966, 2010.
doi:10.1109/JSSC.2010.2041401

25. Liao, H.-H., H. Jiang, P. Shanjani, J. King, and A. Behzad, "A fully integrated 2 × 2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT Technology," IEEE J. Solid-State Circuits, Vol. 44, 1361-1371, 2009.
doi:10.1109/JSSC.2009.2015817