Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-02
Subspace Clutter Removal Techniques in GPR Images
By
Progress In Electromagnetics Research M, Vol. 82, 139-147, 2019
Abstract
In many modern GPR systems, it is desired to detect the presence of targets in the interference which includes clutter and noise. Detection of water leaks using GPR has been aimed in this work. Pipe and soil are known as the clutter of data in this scenario. Various signal processing techniques like multivariate subspace-based algorithms are proposed to effectively suppress the clutter and increase the signal to interference ratio. Combining Independent Component Analysis (ICA) and Principal Component Analysis (PCA) as a unique algorithm has demonstrated the ability to eliminate the GPR clutter and extract the target signal.
Citation
Mohanad Abd Shehab, Mohammed Abdulridha Sahib Al Obaidi, Ilknur Hos, and Saeid Karamzadeh, "Subspace Clutter Removal Techniques in GPR Images," Progress In Electromagnetics Research M, Vol. 82, 139-147, 2019.
doi:10.2528/PIERM19032511
References

1. Daniels, D. J., "Ground penetrating radar," IET Radar, Sonar, Navigation and Avionics, Series 15, Vol. 1, London, UK, 2004.

2. Liu, J. X., B. Zhang, and R. B. Wu, "GPR ground bounce removal methods based on blind source separation," PIERS 2006 in Cambridge Proceedings, 256-259, USA, March 26-29, 2006.

3. Zhu, J., W. Xue, X. Rong, and Y. Yu, "A clutter suppression method based on improved principal component selection rule for ground penetrating radar," Progress In Electromagnetics Research M, Vol. 53, 29-39, 2017.
doi:10.2528/PIERM16102903

4. Abujarad, F. and A. Omar, "GPR data processing using the component-separation methods PCA and ICA, imagining systems and techniques," Proceedings of the 2006 IEEE International Workshop on [Imagining read Imaging], 60-64, IEEE, 2006.

5. Karlsen, B., J. Larsen, H. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001, 146-149, IEEE, 2001.

6. Karlsen, B., H. B. Sorensen, J. Larsen, and K. B. Jakobsen, "Independent component analysis for clutter reduction in ground penetrating radar data, detection and remediation technologies for mines and minelike targets VII," International Society for Optics and Photonics, Vol. 4742, 378-390, 2002.

7. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903

8. Abujarad, F., G. Nadim, and A. Omar, "Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD)," Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2005, 37-42, IEEE, 2005.
doi:10.1109/AGPR.2005.1487840

9. Cagnoli, B. and T. Ulrych, "Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits," Journal of Applied Geophysics, Vol. 48, No. 3, 175-182, 2001.
doi:10.1016/S0926-9851(01)00089-1

10. Riaz, M. M. and A. Ghafoor, "Information theoretic criterion based clutter reduction for ground penetrating radar," Progress In Electromagnetics Research B, Vol. 45, 147-164, 2012.
doi:10.2528/PIERB12080802

11. Karamzadeh, S., M. Kartal, S. Kent, and A. Abed Ashtiyani, "Optimal signal processing method in UWB radar for hidden human detection," 10th European Conference on Synthetic Aperture Radar, EUSAR 2014, 1-3, VDE, 2014.

12. Kumlu, D. and I. Erer, "A comparative study on clutter reduction techniques in GPR images," 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), 323-328, IEEE, 2017.
doi:10.1109/ICEEE2.2017.7935843

13. Khan, U. S. and W. Al-Nuaimy, "Background removal from GPR data using eigen values," 13th International Conference on Ground Penetrating Radar, 2010.

14. Abujarad, F., A. Jostingmeier, and A. S. Omar, "Clutter removal for landmine using different signal processing techniques," Proceedings of the Tenth International Conference on Ground Penetrating Radar, Vol. 1 and 2, 697-700, 2004.

15. Van der Merwe, A. and I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 6, 2627-2637, 2000.
doi:10.1109/36.885209

16. Thu, H., D.-T. Pham, and C. Ah-Soonl, "Mutual information based independent component analysis of array data,", 2005, http://www.math-info.univ-paris5.fr/map5/publis/PUBLIS05/2005-17.pdf.

17. Cichocki, A. and S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, West Sussex, UK, 2003.

18. Thirion, N., J. Mars, and J. L. Boelle, "Separation of seismic signals: A new concept based on a blind algorithm," Signal Processing VIII, Theories and Application, 85-88, Elsevier, Triest, Italy, September 1996.