Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-18
Bistatic EM Scattering Analysis of an Object Above a Rough Surface Using a Hybrid Algorithm Accelerated with the Adaptive Cross Approximation Method
By
Progress In Electromagnetics Research M, Vol. 82, 19-28, 2019
Abstract
Calculating the RCS (Radar Cross Section) of two 3D scatterers needs to numerically solve a set of integral equations involving numerous unknowns. Such a 3D problem can not be solved easily with a conventional Method of Moments (MoM) by using a direct LU inversion. Thus, a hybridization between the Extended Propagation-Inside-Layer Expansion (E-PILE) and the Physical Optics approximation (PO) reduces signi cantly the memory requirements and CPU time. The resulting method called E-PILE+PO. In this work, we take advantage of the rank-de cient nature of the coupling matrices, corresponding to scatterer 1 (the object) and scatterer 2 (the rough surface) interactions, to further reduce the complexity of the method by using the Adaptive Cross Approximation (ACA).
Citation
Mohammad Kouali, and Noor Obead, "Bistatic EM Scattering Analysis of an Object Above a Rough Surface Using a Hybrid Algorithm Accelerated with the Adaptive Cross Approximation Method," Progress In Electromagnetics Research M, Vol. 82, 19-28, 2019.
doi:10.2528/PIERM19022003
References

1. Guo, L.-X., A.-Q. Wang, and J. Wang, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

2. Liu, P. and Y. Q. Jin, "The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 12, No. 5, 950-956, 2004.

3. Ye, H. and Y. Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 5, 1174-1180, 2007.
doi:10.1109/TGRS.2007.892609

4. Dechamps, N., N. De Beaucoudrey, C. Bourlier, and S. Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method," Journal of the Optical Society of America A, Vol. 23, No. 2, 359-369, 2006.
doi:10.1364/JOSAA.23.000359

5. Kouali, M., G. Kubick, and C. Bourlier, "Electromagnetic scattering from two-scatterers using the extended propagation-inside-layer expansion method," General Assembly and Scientific Symposium, 1-4, 2011.

6. Pino, M. R., F. Obelleiro, L. Landesa, and R. J. Burkholder, "Application of the fast multipole method to the generalized forward-backward iterative algorithm," Microwave and Optical Technology Letters, Vol. 26, No. 2, 78-83, 2000.
doi:10.1002/1098-2760(20000720)26:2<78::AID-MOP4>3.0.CO;2-K

7. Kubick, G. and C. Bourlier, "A fast hybrid method for scattering from a large object with dihedral effects above a large rough surface," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 189-198, 2011.
doi:10.1109/TAP.2010.2090470

8. Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 6, 961-969, 1999.
doi:10.1109/8.777118

9. Ye, H. and Y. Q. Jin, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 1, 108-115, 2006.
doi:10.1109/TGRS.2005.859955

10. Ye, H. and Y. Q. Jin, "A hybrid KAMoM algorithm for computation of scattering from a 3D PEC target above a dielectric rough surface," Radio Science, Vol. 43, No. 3, 1-15, 2008.
doi:10.1029/2007RS003702

11. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green’s function," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3399-3405, 2009.
doi:10.1109/TGRS.2009.2022169

12. Johnson, J. T., "A numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

13. Johnson, J. T. and R. J. Burkholder, "Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, 1214-1220, 2001.
doi:10.1109/36.927443

14. Johnson, J. T., "A study of the four path model for scattering from an object above a half space," Microwave and Optical Technology Letters, Vol. 20, No. 30, 130-134, 2001.
doi:10.1002/mop.1242

15. Guo, L. X., J. Li, and H. Zeng, "Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach," JOSA A, Vol. 26, No. 11, 2383-2392, 2009.
doi:10.1364/JOSAA.26.002383

16. Kuang, L. and Y. Q. Jin, "Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2302-2312, 2007.
doi:10.1109/TAP.2007.901846

17. Kouali, M., G. Kubick, and C. Bourlier, "Extended propagation-inside-layer expansion method combined with the forward-backward method to study the scattering from an object above a rough surface," Optics Letters, Vol. 37, No. 14, 2985-2987, 2012.
doi:10.1364/OL.37.002985

18. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 3, 366-372, 1994.
doi:10.1109/8.280723

19. Tap, K., P. H. Pathak, and R. J. Burkholder, "Complex source beam-moment method procedure for accelerating numerical integral equation solutions of radiation and scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2052-2062, 2014.
doi:10.1109/TAP.2014.2298536

20. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas and Propagation Magazine, Vol. 32, No. 5, 18-30, 1990.
doi:10.1109/74.80583

21. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

22. Kubicke, G., C. Bourlier, S. Bellez, and H. Li, "A fast EPILE+FBSA method combined with adaptive cross approximation for the scattering from a target above a large ocean-like surface," Progress In Electromagnetics Research M, Vol. 37, 175-182, 2014.
doi:10.2528/PIERM14052503

23. Yang, W. and C. Qi, "A bi-iteration model for electromagnetic scattering from a 3D object above a 2D rough surface," Electromagnetics, Vol. 35, No. 3, 190-204, 2015.
doi:10.1080/02726343.2015.1005203

24. Kouali, M., G. Kubick, and C. Bourlier, "Scattering from an object above a rough surface using the extended PILE method hybridized with PO approximation," Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

25. Kouali, M., G. Kubick, and C. Bourlier, "Electromagnetic interactions analysis between two 3-D scatterers using the E-PILE method combined with the PO approximation," Progress In Electromagnetic Research B, Vol. 58, 123-138, 2014.
doi:10.2528/PIERB14011204