Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-02-21

Ship Detection in SAR Image Based on Information Geometry Method

By Xiangxiang Yang, Meng Yang, Yinhua Zhang, and Gong Zhang
Progress In Electromagnetics Research M, Vol. 79, 81-90, 2019
doi:10.2528/PIERM19010102

Abstract

Aiming at the problem of high false alarm rate with respect to adaptive threshold in the ship detection from synthetic aperture radar (SAR) images, a novel strategy increasing robustness when using local adaptive threshold is proposed. In this article, we establish a fusion detection model based on a combination of the information geometry and surface geometry. Information geometry from a metric viewpoint can increase the contrast between targets and clutter in SAR image. Local surface feature gives a brief application of adaptive threshold method in ship detection from SAR images by means of the constant false-alarm-rate. Experiments indicate that the proposed geometry-based approach can effectively detect ship targets from complex background SAR images by using the method of fusion processing.

Citation


Xiangxiang Yang, Meng Yang, Yinhua Zhang, and Gong Zhang, "Ship Detection in SAR Image Based on Information Geometry Method," Progress In Electromagnetics Research M, Vol. 79, 81-90, 2019.
doi:10.2528/PIERM19010102
http://jpier.org/PIERM/pier.php?paper=19010102

References


    1. Gao, G., S. Gao, J. He, and G. Li, "Ship detection using compact polarimetric SAR based on the notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5380-5393, 2018.
    doi:10.1109/TGRS.2018.2815582

    2. Jiao, J., Y. Zhang, H. Sun, X. Yang, X. Gao, W. Hong, K. Fu, and X. Sun, "A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection," IEEE Access, Vol. 6, 20881-20892, 2018.
    doi:10.1109/ACCESS.2018.2825376

    3. Li, T., Z. Liu, L. Ran, and R. Xie, "Target detection by exploiting superpixel-level statistical dissimilarity for SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 562-566, 2018.
    doi:10.1109/LGRS.2018.2805714

    4. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 11, No. 1, 184-194, 2018.
    doi:10.1109/JSTARS.2017.2764506

    5. Odysseas, P., A. Alin, and B. David, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
    doi:10.1109/LGRS.2018.2838263

    6. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE J. Oceanic Eng., Vol. 43, No. 1, 267-279, 2018.
    doi:10.1109/JOE.2017.2768198

    7. Amari, S., Information Geometry and Its Application, Springer, Tokyo, 2016.
    doi:10.1007/978-4-431-55978-8

    8. Nielsen, F. and R. Bhatia, Matrix Information Geometry, Springer-Verlag, Heidelberg, 2013.
    doi:10.1007/978-3-642-30232-9

    9. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley, New York, 2010.
    doi:10.1002/9780470627242

    10. Arwini, K. A. and C. T. J. Dodson, Information Geometry - Near Randomness and Near Independence, Springer-Verlag, Heidelberg, 2008.

    11. Xue, J.-H. and D. M. Titterington, "T-tests, F-tests and Otsu’s methods for image thresholding," IEEE Trans. Image Process., Vol. 20, No. 8, 2392-2396, 2011.
    doi:10.1109/TIP.2011.2114358

    12. Fabbrini, L., M. Greco, M. Messina, and G. Pinelli, "Improved edge enhancing diffusion filter for speckle-corrupted images," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, 119-123, 2014.
    doi:10.1109/LGRS.2013.2247377