Vol. 77
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-05
A Shape-First, Feed-Next Design Approach for Compact Planar MIMO Antennas
By
Progress In Electromagnetics Research M, Vol. 77, 157-165, 2019
Abstract
Employing characteristic mode theory (CMT), a shape-first feed-next design methodology for compact planar antennas is proposed, which facilitates rapid and systematic design of self-matched, multi-port antennas with optimal bandwidth and high isolation. First, the optimal antenna shape with multiple self-resonant modes is synthesized using a binary genetic algorithm. Then, the optimal feed positions that provide good input matching and high isolation between the excitation ports are specified using a virtual probe modeling technique. A two-port microstrip antenna with an electrical size of 0.45λd×0.297λd is designed, fabricated and measured. The measured operating frequency is within 2% of the full wave simulation, and the overall S parameter characteristics and far field patterns agree well with the simulation result, validating our design methodology. Mutual coupling S21 < -30 dB at the center frequency is achieved in this design.
Citation
Binbin Yang, Juncheng Zhou, and Jacob J. Adams, "A Shape-First, Feed-Next Design Approach for Compact Planar MIMO Antennas," Progress In Electromagnetics Research M, Vol. 77, 157-165, 2019.
doi:10.2528/PIERM18100903
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784

2. Liu, L., S. Cheung, and T. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4257-4264, 2013.
doi:10.1109/TAP.2013.2263277

3. Ren, J., W. Hu, Y. Yin, and R. Fan, "Compact printed MIMO antenna for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1517-1520, 2014.

4. Soltani, S. and R. D. Murch, "A compact planar printed mimo antenna design," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1140-1149, 2015.
doi:10.1109/TAP.2015.2389242

5. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, Feb. 2010.
doi:10.1109/TAP.2009.2037690

6. Soltani, S., P. Lotfi, and R. D. Murch, "A dual-band multiport MIMO slot antenna for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 529-532, 2017.
doi:10.1109/LAWP.2016.2587732

7. Redondo, C. and L. de Haro, "On the analysis and design of reconfigurable multimode MIMO microstrip antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 119-129, 2014.
doi:10.1109/TAP.2013.2288975

8. Li, H., Z. T. Miers, and B. K. Lau, "Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2756-2766, May 2014.
doi:10.1109/TAP.2014.2308530

9. Martens, R. and D. Manteuffel, "Systematic design method of a mobile multiple antenna system using the theory of characteristic modes," IET Microwaves, Antennas & Propagation, Vol. 8, No. 12, 887-893, 2014.
doi:10.1049/iet-map.2013.0534

10. Deng, C., Z. Feng, and S. V. Hum, "MIMO mobile handset antenna merging characteristic modes for increased bandwidth," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2660-2667, Jul. 2016.
doi:10.1109/TAP.2016.2537358

11. Zhang, Q., R. Ma, W. Su, and Y. Gao, "Design of a multimode UWB antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3712-3717, Jul. 2018.
doi:10.1109/TAP.2018.2835370

12. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999

13. Yang, B. and J. J. Adams, "Systematic shape optimization of symmetric MIMO antennas using characteristic modes," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2668-2678, 2016.
doi:10.1109/TAP.2015.2473703

14. Yang, B. and J. J. Adams, "A modal approach to shape synthesis and feed placement for planar MIMO antennas," Proc. 2016 IEEE Int. Symp. Antennas and Propagation, 15-16, 2016.
doi:10.1109/APS.2016.7695716

15. Chow, Y. L., J. Yang, D. Fang, and G. Howard, "A closed-form spatial Green’s function for the thick microstrip substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309

16. Capek, M., J. Eichler, and P. Hazdra, "Evaluating radiation efficiency from characteristic currents," IET Microwaves, Antennas & Propagation, Vol. 9, No. 1, 10-15, 2014.
doi:10.1049/iet-map.2013.0473

17. Yang, B. and J. J. Adams, "Computing and visualizing the input parameters of arbitrary planar antennas via eigenfunctions," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2707-2718, Jul. 2016.
doi:10.1109/TAP.2016.2554604

18. Ethier, J. L. and D. A. McNamara, "Antenna shape synthesis without prior specification of the feedpoint locations," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 4919-4934, 2014.
doi:10.1109/TAP.2014.2344107

19. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Lett., Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

20. Soltani, S., P. Lotfi, and R. D. Murch, "Design and optimization of multiport pixel antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2049-2054, Apr. 2018.
doi:10.1109/TAP.2018.2800759

21. Lu, D., L.Wang, E. Yang, and G.Wang, "Design of high-isolation wideband dual-polarized compact MIMO antennas with multiobjective optimization," IEEE Trans. Antennas Propag., Vol. 66, No. 3, 1522-1527, Mar. 2018.
doi:10.1109/TAP.2017.2784446

22. Mallahzadeh, A. R., S. Es’haghi, and A. Alipour, "Design of an E-shaped MIMO antenna using iwo algorithm for wireless application at 5.8 GHz," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704