Vol. 75
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-06
Polarizations of Crossed-Dipole Antenna Loaded with Different NFRP Elements
By
Progress In Electromagnetics Research M, Vol. 75, 131-140, 2018
Abstract
In this paper, the polarizations of single-feed crossed-dipole antennas loaded with different near-field resonant parasitic (NFRP) elements are investigated. The antennas are placed above a metallic reflector for a broadside radiation pattern. Meander line with an arrowhead-shaped ending is applied in all arms of the crossed-dipole and NFRP elements for the compactness. By adjusting the ending sizes of the NFRP element, the polarization of antenna can be right-hand circularly polarized (RHCP) - linearly polarized (LP) - left-hand circularly polarized (LHCP). For validation, two antennas with RHCP and LHCP performances are implemented and measured. The RHCP antenna yields a |S11| < -10 dB bandwidth of 1.454-1.668 GHz (214 MHz) and a 3-dB axial ratio (AR) bandwidth of 1.525-1.585 GHz (60 MHz). The LHCP antenna yields a |S11| < -10 dB bandwidth of 1.475-1.702 GHz (227 MHz) and a 3-dB AR bandwidth of 1.535-1.580 GHz (45 MHz). Moreover, both antennas yield a good broadside radiation with a gain of > 6.0 dBic and a radiation efficiency of > 65% across their operational bandwidth.
Citation
Son Xuat Ta, "Polarizations of Crossed-Dipole Antenna Loaded with Different NFRP Elements," Progress In Electromagnetics Research M, Vol. 75, 131-140, 2018.
doi:10.2528/PIERM18092301
References

1. Ziolkowski, R. W., P. Jin, and C. Lin, "Metamaterial-inspired engineering of antennas," IEEE Proc., Vol. 99, No. 10, 1720-1731, Oct. 2011.
doi:10.1109/JPROC.2010.2091610

2. Dong, Y. and T. Itoh, "Metamaterial-based antennas," IEEE Proc., Vol. 100, No. 7, 2271-2285, Jul. 2012.
doi:10.1109/JPROC.2012.2187631

3. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically-small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, Mar. 2008.
doi:10.1109/TAP.2008.916949

4. Jin, P. and R. W. Ziolkowski, "Multiband extensions of the electrically small metamaterial-engineered Z antenna," IET Microw. Antennas Propag., Vol. 4, 1016-1025, Aug. 2010.
doi:10.1049/iet-map.2009.0609

5. Lin, C., P. Jin, and R. W. Ziolkowski, "Multi-functional, magnetically-coupled, electrically small, near-field resonant parasitic wire antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 714-724, Mar. 2011.
doi:10.1109/TAP.2010.2103008

6. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
doi:10.1109/TAP.2011.2123053

7. Jin, P., C. Lin, and R. W. Ziolkowski, "Multifunctional, electrically small, planar near-field resonant Multifunctional, electrically small, planar near-field resonant," IEEE Antennas Wireless Propag. Lett., Vol. 11, 200-204, 2012.

8. Jin, P. and R. W. Ziolkowski, "High directivity, electrically small, low-profile, near-field resonant parasitic antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 305-309, 2012.

9. Tang, M., B. Zhou, and R. W. Ziolkowski, "Low-profile, electrically small, Huygens source antenna with pattern-configurability that covers the entire azimuthal plane," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1063-1072, Mar. 2017.
doi:10.1109/TAP.2016.2647712

10. Ta, S. X., K. Lee, I. Park, and R. W. Ziolkowski, "Compact crossed-dipole antenna loaded with near-field resonant parasitic element," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 482-488, Feb. 2017.
doi:10.1109/TAP.2016.2633226

11. Ta, S. X., I. Park, and R. W. Ziolkowski, "Broadband circularly polarized NFRP antenna using Broadband circularly polarized NFRP antenna using," 11th European Conference on Antennas and Propagation (EuCAP), 1972-1975, Paris, France, Mar. 2017.