Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-11
Asymmetric Ground Structured Circularly Polarized Antenna for ISM and WLAN Band Applications
By
Progress In Electromagnetics Research M, Vol. 76, 167-175, 2018
Abstract
This article presents the design and analysis of a dual-band antenna with circular polarization for ISM and WLAN band applications. The proposed antenna operates at two frequencies ranging from 2.1-3.1 GHz and 4.4-7.7 GHz with resonating frequencies at 2.45 GHz industrial, scientific and medical band (ISM) and 5.8 GHz wireless local area network band (WLAN). The antenna is fed by coplanar waveguide feeding (CPW) with an asymmetric ground structure, and the radiating element consists of 24 spokes in the design. The current antenna providing the impedance bandwidths of 38.4% and 49% at two operating bands. The proposed antenna exhibiting circular polarisation with 3 dB axial ratio bandwidth of 150 MHz at 2.33-2.48 GHz and 1600 MHz at 5.14-6.74 GHz. The designed antenna is fabricated on an RT Duroid 5880 substrate with dimensions of 40 x 28 x 0.4 mm3. The intension behind the design of this antenna is to use it for wearable applications in conformal nature with low specific absorption rate (SAR). The SAR values observed at two operating frequencies are 1.09 W/Kg and 1.47 W/Kg, respectively. The placement and radiation characteristics analysis is done with Ansys Savant tool, and the subsequent measured results provide good correlation with simulation results.
Citation
Badugu Prudhvi Nadh, Boddapati Taraka Phani Madhav, Munuswamy Siva Kumar, Manikonda Venkateswara Rao, and Tirunagari Anilkumar, "Asymmetric Ground Structured Circularly Polarized Antenna for ISM and WLAN Band Applications," Progress In Electromagnetics Research M, Vol. 76, 167-175, 2018.
doi:10.2528/PIERM18091405
References

1. Zhu, D., Y.-X. Guo, M. Je, and D.-L. Kwong, "Design and in vitro test of a differentially fed dualband implantable antenna operating at MICS and ISM bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2430-2439, 2014.
doi:10.1109/TAP.2014.2309130

2. Velan, S. and E. F. Sundarsingh, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

3. Tak, J., S. Woo, J. Kwon, and J. Choi, "Dual-band dual-mode patch antenna for on-/off-body WBAN communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 348-351, 2016.
doi:10.1109/LAWP.2015.2444881

4. Deepak, U., T. K. Roshna, C. M. Nijas, K. Vasudevan, and P. Mohanan, "A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1514-1520, 2015.
doi:10.1109/TAP.2015.2393876

5. Xu, L.-J., Z. Duan, and Y.-M. Tang, "A dual-band on-body repeater antenna for body sensor network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1649-1652, 2016.
doi:10.1109/LAWP.2016.2520023

6. Kang, D.-G., J. Tak, and J. Choi, "Dual-band on-body antenna for in-on-on WBAN repeater applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 436-441, 2016.
doi:10.1002/mop.29591

7. Lu, L. and J. C. Coetzee, "A modified dual-band microstrip monopole antenna," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1401-1403, 2006.
doi:10.1002/mop.21636

8. Yeung, S. H., K. F. Man, and W. S. Chan, "Optimised design of an ISM band antenna using a jumping genes methodology," IET Microwaves, Antennas & Propagation, Vol. 2, No. 3, 259-267, 2008.
doi:10.1049/iet-map:20070117

9. Tak, J., D.-G. Kang, and J. Choi, "A compact dual-band monopolar patch antenna using TM01 and TM41 modes," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1699-1703, 2016.
doi:10.1002/mop.29889

10. Zhu, X.-Q., Y.-X. Guo, and W. Wu, "A novel dual-band antenna for wireless communication applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 516-519, 2016.
doi:10.1109/LAWP.2015.2456039

11. Tran, H. H. and I. Park, "Wideband circularly polarized cavity-backed asymmetric crossed bowtie dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 358-361, 2016.
doi:10.1109/LAWP.2015.2445939

12. Tu, T. L., H. H. Tran, and H. C. Park, "A simple penta-band circularly polarized cpw-fed monopole-patch antenna covering six commercial application bands," Microwave and Optical Technology Letters, Vol. 60, No. 3, 773-778, 2018.
doi:10.1002/mop.31046

13. Zahran, S. R., M. A. Abdalla, and A. Gaafar, "Time domain analysis for foldable thin UWB monopole antenna," AEU-International Journal of Electronics and Communications, Vol. 83, 253-262, 2018.
doi:10.1016/j.aeue.2017.09.006

14. Saygin, H., V. Rafiei, and S. Karamzadeh, "A new compact dual band CP antenna design," Microwave and Optical Technology Letters, Vol. 60, No. 3, 594-600, 2018.
doi:10.1002/mop.31019

15. Sajal, S., B. D. Braaten, T. Tolstedt, S. Asif, and M. J. Schroeder, "Design of a conformal monopole antenna on a paper substrate using the properties of graphene-based conductors," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1279-1283, 2017.
doi:10.1002/mop.30524

16. Ahmed, M. I., M. F. Ahmed, and A. E. H. Shaalan, "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research, Vol. 53, 99-110, 2017.
doi:10.2528/PIERM16110706

17. Shin, C. S., D. G. Choi, N. Kim, and J. I. Choi, "Internal monopole antenna design for multi-band operation and SAR analysis," PIERS Proceedings, 294-297, Hangzhou, Zhejiang, China, Aug. 22–26, 2005.

18. Ahmed, M. I., E. A. Abdallah, and H. M. Elhennawy, "Novel wearable eagle shape microstrip antenna array with mutual coupling reduction," Progress In Electromagnetics Research B, Vol. 62, 87-103, 2015.
doi:10.2528/PIERB14120901