Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

CSAR Imaging of Electromagnetically Coupled Conducting Scatterers

By Nicolas A. Guido, Evan T. Hiatt, and Enson Chang
Progress In Electromagnetics Research M, Vol. 79, 113-126, 2019


Chipless RFID with small, printed metal tags have been proposed as a cost-effective alternative to chip-based technologies. A potentially viable configuration is to image the patches of different shapes, sizes, and orientations within a tag with a tabletop-scale synthetic aperture radar (SAR), operating in the V or W band. Information is encoded into, e.g. polarization, resonance characteristics, and phase of the scattered signal. The effect of electromagnetic coupling and sidelobe interference between closely spaced metal patches on SAR image has not been addressed in prior studies. To be specific, we analyze 60 GHz circular SAR (CSAR) imagery of subwavelength patches separated by distances on the order of wavelength. The scattered field is calculated with the method of moments (MoM) to account for EM interaction. The field is then used to form CSAR image with the polar formatting algorithm (PFA). Significant distortion of the CSAR image is found at this scale. Sidelobe interference causes image distortion and up to 7 dB of intensity modulation with patch separation. EM coupling produces an ``interaction image,'' an artifact that extends between the patches. The source of this effect is traced to induced currents and charges residing on the patches' inner edges. Increasing system bandwidth or changing the incidence angle has minimal effect on both classes of image artifacts, highlighting the importance of accounting for them in practical system design and subsequent information processing.


Nicolas A. Guido, Evan T. Hiatt, and Enson Chang, "CSAR Imaging of Electromagnetically Coupled Conducting Scatterers," Progress In Electromagnetics Research M, Vol. 79, 113-126, 2019.


    1. Meinel, H. H., "Evolving automotive radar - From the very beginnings into the future," Proc. EuCAP, 3107-3114, The Hague, Netherlands, 2014.

    2. Patole, S., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Proc. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.

    3. Felic, G. K., R. J. Evans, H. T. Duong, H. V. Le, J. Li, and E. Skafidas, "Single-chip millimeter wave radar," Microwave J., Vol. 58, 108-116, Jan. 2015.

    4. Pettus, M., "RFID system utilizing parametric reflective technology,", U.S. Patent 7 460 016, Dec. 2, 2008.

    5. Kofman, S., Y. Meerfeld, M. Sandler, S. Dukler, and V. Alchanatis, "Radio frequency identification system and data reading method,", U.S. Patent 20090014520A1, Jan. 15, 2009.

    6. Pettus, M., "RFID system utilizing parametric reradiated technology,", U.S. Patent, 7 498 940, Mar. 3, 2009.

    7. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, Chichester, England, 1991.

    8. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, Boston, MA, USA, 1995.

    9. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.

    10. Zomorrodi, M. and N. C. Karmakar, "Optimized MIMO-SAR technique for fast EM-Imaging of chipless RFID system," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 7, 2142-2151, Jul. 2012.

    11. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. Image Process., Vol. 5, No. 8, 1252-1265, Aug. 1996.

    12. Musgrove, C., "Synthetic aperture radar speckle reduction for circle mode SAR images," Proc. SPIE 9829, Radar Sensor Technology XX, May 2016.

    13. Ishimaru, A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, Sep. 1998.

    14. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1600-1610, May 2005.

    15. Therrien, C. W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, New Jersey, 1992.

    16. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice Hall, New Jersey, 1997.

    17. Ciuonzo, D., G. Romano, and R. Solimenne, "Performance analysis of time-reversal MUSIC," IEEE Trans. Signal Process., Vol. 63, No. 10, 2650-2662, May 2015.

    18. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Sig. Proc. Lett., Vol. 24, No. 7, 1024-1028, Jul. 2017.

    19. Ciuonzo, P. and P. S. Rossi, "Noncolocated time-reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Process. Lett., Vol. 24, No. 4, 397-401, Apr. 2017.

    20. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Process., Vol. 16, No. 8, 1967-1984, Aug. 2007.

    21. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.

    22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, May 1982.

    23. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagnetic scattering by arbitrary surfaces,", Tech. Rep. RADC-TR-79-325, Rome Air Development Center, Griffiss AFB, NY, Mar. 1980.

    24. Davidson, D., Computational Electromagnetics for RF and Microwave Engineering, Cambridge U. Press, Cambridge, 2005.

    25. Twersky, V., "Multiple scattering of electromagnetic waves by arbitrary configurations," J. of Mathematical Physics, Vol. 8, No. 3, 589-610, Mar. 1967.

    26., "Method of moments solver for metal structures,", [Online], Available: https://www.mathworks.com/help/antenna/ug/method-of-moments.html.

    27. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Spatially variant apodization for sidelobe control in SAR imagery," Proc. 1994 IEEE National Radar Conf., Mar. 1994.

    28. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Trans. Aerosp. Electron. Syst., Vol. 31, No. 1, 267-279, Jan. 1995.

    29. Stankwitz, H. C. and M. R. Kosek, "Sparse aperture fill for SAR using super-SVA," Proc. 1996 IEEE National Radar Conf., May 1996.

    30. DeGraaf, S. R., "Sidelobe reduction via adaptive FIR filtering in SAR imagery," IEEE Trans. Image Process., Vol. 3, No. 3, 292-301, May 1994.

    31. Högbom, J., "Aperture synthesis with a non-regular distribution of interferometer baselines," Astrophys. J. Suppl. Ser., Vol. 15, 417-426, 1974.

    32. Lannes, A., E. Anterrieu, and P. Marechal, "CLEAN and WIPE," Astron. Astrophys. Suppl. Ser., Vol. 123, 183-198, May 1997.

    33. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.

    34. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," J. Acoust. Soc. Am., Vol. 115, No. 6, 3042-3047, Jun. 2004.