Vol. 74
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-11
Circular Ring Shaped Polarization Reconfigurable Antenna for Wireless Communications
By
Progress In Electromagnetics Research M, Vol. 74, 105-113, 2018
Abstract
A single fed polarization reconfigurable antenna is presented. The antenna comprises of a circular ring-shaped radiating element along with reconfigurable feed network located at its center which eliminates the need for additional space for reconfigurable feed network. A separate biasing network is placed to bias the pin diodes in the feed network for polarization reconfiguration and achieves three polarization states (linear, left-hand and right-hand circularly polarization). The antenna is designed to operate at 2.4 GHz ISM band. The antenna parameters are simulated using Ansoft high-frequency structure simulator and are validated using Agilent network analyzer (N9925A) and antenna test systems. The antenna achieves a good -10 dB impedance bandwidth of 85 MHz (2.40-2.485) GHz in linear state and 85 MHz (2.41-2.495) GHz in the circularly polarization states along with better cross-polarization isolation (≥ 15 dB) in the operating bands and hence more suitable for modern wireless communications.
Citation
Manavalan Saravanan, and Madihally Janardhana Rangachar, "Circular Ring Shaped Polarization Reconfigurable Antenna for Wireless Communications," Progress In Electromagnetics Research M, Vol. 74, 105-113, 2018.
doi:10.2528/PIERM18081608
References

1. Lin, W. and H. Wong, "Wideband circular polarization reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5938-5944, Dec. 2015.
doi:10.1109/TAP.2015.2489210

2. Lin, W. and H. Wong, "Polarization reconfigurable aperture-fed patch antenna and array," IEEE Access, Vol. 4, 1510-1517, 2016.
doi:10.1109/ACCESS.2016.2552488

3. Anantha, B., L. Merugu, and P. V. D. S. Rao, "A novel single feed frequency and polarization reconfigurable microstrip patch antenna," AEU — International Journal of Electronics and Communications, Vol. 72, 8-16, Feb. 2017.
doi:10.1016/j.aeue.2016.11.012

4. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "Dual-cap mushroom-like metasurface used in CP reconfigurable monopole antenna for performance enhancement," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5949-5955, Dec. 2015.
doi:10.1109/TAP.2015.2489682

5. Sun, H. and S. Sun, "A novel reconfigurable feeding network for quad-polarization-agile antenna design," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 311-316, Jan. 2016.
doi:10.1109/TAP.2015.2497350

6. Row, J. S., W. L. Liu, and T. R. Chen, "Circular polarization and polarization reconfigurable designs for annular slot antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5998-6002, Dec. 2012.
doi:10.1109/TAP.2012.2211556

7. Lin, W., H. Wong, and R. W. Ziolkowski, "Circularly polarized antenna with reconfigurable broadside and conical beams facilitated by a mode switchable feed network," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 996-1001, 2018.
doi:10.1109/TAP.2017.2784452

8. Qian, Y. H. and Q. X. Chu, "A polarization-reconfigurable water-loaded microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2179-2182, 2017.
doi:10.1109/LAWP.2017.2703821

9. Khan, M., G. Hayes, S. Zhang, M. Dickey, and G. Lazzi, "A pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 11, 577-579, Nov. 2012.
doi:10.1109/LMWC.2012.2223754

10. Liang, B., B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, "A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 33-40, Jan. 2015.
doi:10.1109/TAP.2014.2367537

11. Lin, W., S. Chen, R. W. Ziolkowski, and Y. J. Guo, "Reconfigurable, wideband, low-profile, circularly polarized antenna and array enabled by an artificial magnetic conductor ground," IEEE Trans. Antennas Propag., Vol. 66, No. 3, 1564-1569, 2018.
doi:10.1109/TAP.2018.2790437

12. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
doi:10.2528/PIER07053002

13. Arriola, A., E. Arruti, and J. I. Sancho, "PIN diodes and their impact on reconfigurable compact microstrip antennas with high frequency-ratio," Microwave and Optical Technology Letters, Vol. 56, No. 11, 2676-2681, 2014.
doi:10.1002/mop.28667