Vol. 73
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-22
Low Loss High Power Air Suspended Stripline Power Divider for High Power Division Sub-Systems Applications
By
Progress In Electromagnetics Research M, Vol. 73, 153-162, 2018
Abstract
In this paper, a high power, air suspended stripline (SSL) T junction power divider at L band microwave frequencies is introduced. The power divider operating frequency is centered at 1.3 GHz. In this new configuration, the only dielectric used is air to have maximum power handling capability. An excitation transition from coaxial cable to the SSL transmission line is explained. The SSL was fabricated using alumi-num sheets to gain the advantage of low cost. The power divider design was validated using circuit and 3D full wave simulations and confirmed using experimental measurements with all agreements. It has been proved that the power divider attenuation has sharp rejection characteristic at the designed frequency (-20 dB at 1.3 GHz). The power divider can be used as a feeder for devices used in high power applications.
Citation
Ahmed F. Elshafey, and Mahmoud Abdalla, "Low Loss High Power Air Suspended Stripline Power Divider for High Power Division Sub-Systems Applications," Progress In Electromagnetics Research M, Vol. 73, 153-162, 2018.
doi:10.2528/PIERM18070506
References

1. Thumm, M. K. and W. Kasparek, "Passive high-power microwave components," IEEE Trans. Plasma Science, Vol. 30, No. 3, 755-786, Jun. 2002.
doi:10.1109/TPS.2002.801653

2. Cheon, Y. and Y. Kim, "Stripline-fed aperture-coupled patch array antenna with reduced sidelobe," Electronics Letters, Vol. 51, No. 18, 1402-1403, Aug. 2015.
doi:10.1049/el.2015.1915

3. Czawka, G. and N. Litwinczuk, "Six-channel broadband inhomogeneous microstrip power divider for communication antenna array," 15th International Conference on Microwaves, Radar and Wireless Communications, 2004. MIKON-2004, Vol. 3, 1020-1023, IEEE, 2004.

4. Linner, L. P. and G. Andersson, "Multi-terminal power dividers combining cavity and stripline technique," 13th European Microwave Conference, 1983, 348-353, IEEE, Sep. 1983.

5. Nick, M. and A. Mortazawi, "A Doherty power ampli er with extended resonance power divider for linearity improvement," 2008 IEEE MTT-S International Microwave Symposium Digest, 423-426, IEEE, Jun. 2008.
doi:10.1109/MWSYM.2008.4633193

6. Riemer, P. J., J. S. Humble, J. F. Prairie, J. D. Coker, B. A. Randall, B. K. Gilbert, and E. S. Daniel, "Ka-band SiGe HBT power ampli er for single-chip T/R module applications," IEEE/MTT-S International Microwave Symposium, 2007, 1071-1074, IEEE, Jun. 2007.
doi:10.1109/MWSYM.2007.380278

7. Bialkowski, M. E., A. M. Abbosh, and N. Seman, "Compact microwave six-port vector voltmeters for ultra-wideband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2216-2223, 2007.
doi:10.1109/TMTT.2007.906539

8. Chiu, L., T. Y. Yum, Q. Xue, and C. H. Chan, "A wideband compact parallel-strip 180/spl deg/Wilkinson power divider for push-pull circuitries," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 49-51, 2006.
doi:10.1109/LMWC.2005.859972

9. Sodano, H. A., "Active and passive smart structures and integrated systems," SPIE, Vol. 8341, 778, Mar. 2012.

10. Lee, T. H., Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits, Vol. 1, Cambridge University Press, 2004.

11. Kao, J. C., Z. M. Tsai, K. Y. Lin, and H.Wang, "A modi ed Wilkinson power divider with isolation bandwidth improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 9, 2768-2780, 2012.
doi:10.1109/TMTT.2012.2206402

12. Souid, B. and S. Arvas, "Yield analysis of a stripline Wilkinson power divider using Monte Carlo samples of interpolated full wave simulation data using Sonnet," General Assembly and Scienti c Symposium, 2011 XXXth URSI, 1-4, IEEE, Aug. 2011.

13. Hirota, A., Y. Tahara, H. Yukawa, T. Owada, Y. Yamaguchi, and H. Miyashita, "A stripline power divider with insensitive to resistance variations using a parallel resistor pair," 2014 IEEE MTT-S International Microwave Symposium (IMS), 1-3, IEEE, Jun. 2014.

14. Tang, W., P. Zhou, X. Chen, and Y. L. Chow, "Design and optimization of stripline passive components with trust-region aggressive space mapping," Asia-Paci c Microwave Conference, 2007. APMC 2007, 1-4, IEEE, Dec. 2007.

15. Darwish, A. M., A. A. Ibrahim, J. Qiu, E. Viveiros, and H. A. Hung, "Novel Ka-band `offset- divider/combiner' with re ection cancellation," 2014 IEEE MTT-S International Microwave Symposium (IMS), 1-3, IEEE, Jun. 2014.

16. Marki, C. F., V. D. Kodwani, and F. A. Marki, "A novel multi-octave differential power divider," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1548-1551, IEEE, May 2010.
doi:10.1109/MWSYM.2010.5514743

17. Zhang, Y., Z. Wang, and R. Xu, "A Ka-band high isolation and in phase planar six way power divider based on LTCC technology," 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-4, IEEE, Sep. 2011.

18. Grindrod, D. K., R. S. Orton, G. P. Steele, and A. J. Scammell, "Performance enhancement of TEM power dividers," 19th European Microwave Conference, 1989, 1123-1130, IEEE, Sep. 1989.
doi:10.1109/EUMA.1989.334119

19. Maloratsky, L. G. and R. Collins, "Reviewing the basics of suspended striplines," Microwave Journal, Vol. 45, No. 10, 82, Oct. 2002.

20. Zurcher, J. F., R. G logowski, and J. R. Mosigt, "A new power divider architecture for suspended strip line," 2012 6th European Conference on Antennas and Propagation (EUCAP), 418-422, IEEE, Mar. 2012.
doi:10.1109/EuCAP.2012.6206226

21. Kim, I. B., K. H. Kwon, S. B. Kwon, W. Mohyuddin, H. C. Choi, and K. W. Kim, "Ultra-wideband multi-section power divider on suspended stripline," 2017 IEEE MTT-S International Microwave Symposium (IMS), 427-430, IEEE, Jun. 2017.
doi:10.1109/MWSYM.2017.8058587

22. Zhang, W., Z. Ning, Y. Wu, C. Yu, S. Li, and Y. Liu, "Dual-band out-of-phase power divider with impedance transformation and wide frequency ratio," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 787-789, 2015.
doi:10.1109/LMWC.2015.2496784

23. Fan, F. F. and Z. H. Yan, "Out-of-phase unequal power divider based on parallel dual- lines structure," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 5, 1-3, IEEE, May 2012.

24. Bhat, B. and S. K. Koul, Stripline-like Transmission Lines for Microwave Integrated Circuits, New Age International, 1989.

25. Howe, H., Stripline Circuit Design, 102-110, Artech House, Dedham, MA, 1974.

26. Bahl, I. J. and R. Garg, "A Designer's guide to stripline circuits," Microwaves, 90-96, Jan. 1978.

27. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.