Vol. 71
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-24
Application of an Improved GSC in TTE Communication with Antenna Array
By
Progress In Electromagnetics Research M, Vol. 71, 41-50, 2018
Abstract
By analyzing the characteristics of the super low frequency (SLF) electromagnetic wave in through the earth (TTE) communication, an orthogonal array of magnetic antenna is proposed for receiving SLF signal, and a new robust adaptive beamformer is used to process the received signals. The proposed beamformer is a multi-input generalized sidelobe canceller (GSC) with a coefficient constrained adaptive blocking matrix and a filter based on minimum mean-square error (MMSE) criterion. It can reduce the leakage of the desired signal and enhance the capability of interference cancellation. The received signals of the main antennas and the reference antennas of the antenna array are input to the beamformer as desired signal and reference signal, respectively. Both simulated and experimental results show that the proposed beamformer can suppress the single-tone and phase modulation interference, whose frequency is close to the desired signal's frequency. The proposed beamformer has better effect and robustness on interference cancellation than the traditional GSC.
Citation
Ning Zhang, Yu-Zhong Jiang, and Ming-Ming Li, "Application of an Improved GSC in TTE Communication with Antenna Array," Progress In Electromagnetics Research M, Vol. 71, 41-50, 2018.
doi:10.2528/PIERM18052701
References

1. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

2. Chen, L., P. Li, Y.Wen, and D.Wang, "High sensitivity magnetic sensor consisting of ferromagnetic alloy, piezoelectric ceramic and high-permeability FeCuNbSiB," Journal of Alloys & Compounds, Vol. 509, No. 14, 4811-4815, 2011.
doi:10.1016/j.jallcom.2011.01.173

3. Yan, L., J. Waynert, C. Sunderman, and N. Damiano, "Statistical analysis and modeling of VLF/ELF noise in coal mines for through-the-earth wireless communications," Industry Applications Society Meeting, 1-5, 2014.

4. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309

5. Lin, W.-J., C.-S. Chang, J.-Y. Li, D.-B. Lin, L.-S. Chen, and M.-P. Houng, "Improved compact broadband bandpass filter using branch stubs co-via structure with wide stopband characteristic," Progress In Electromagnetics Research C, Vol. 5, 45-55, 2008.

6. Sameni, R., "A linear Kalman notch filter for power-line interference cancellation," Csi International Symposium on Artificial Intelligence and Signal Processing, 604-610, 2012.

7. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

8. Stolbov, M. and A. Lavrentyev, "Speech enhancement with microphone array using a multi beam adaptive noise suppressor," International Conference on Speech and Computer, 636-644, 2016.
doi:10.1007/978-3-319-43958-7_77

9. Griffiths, L., J. Jim, and W. Charles, "An alternative approach to linear constrained adaptive beamforming," IEEE Trans. Antennas & Propag., Vol. 30, No. 1, 27-34, 1982.
doi:10.1109/TAP.1982.1142739

10. Hoshuyama, O., A. Sugiyama, and A. Hirano, "A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters," IEEE Transactions on Signal Processing, Vol. 47, No. 10, 2677-2684, 1999.
doi:10.1109/78.790650

11. Gu, Y., N. A. Goodman, S. Hong, and Y. Li, "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Processing, Vol. 96, No. 5, 375-381, 2014.
doi:10.1016/j.sigpro.2013.10.009

12. Huang, L., J. Zhang, X. Xu, and Z. Ye, "Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method," IEEE Transactions on Signal Processing, Vol. 63, No. 7, 1643-1650, 2015.
doi:10.1109/TSP.2015.2396002

13. Somasundaram, S. D., N. H. Parsons, P. Li, and R. C. D. Lamare, "Reduced-dimension robust capon beamforming using Krylov-subspace techniques," IEEE Transactions on Aerospace Electronic Systems, Vol. 51, No. 1, 270-289, 2015.
doi:10.1109/TAES.2014.130485

14. Gu, Y. and A. Leshem, "Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimatio," IEEE Transactions on Signal Processing, Vol. 60, No. 7, 3881-3885, 2012.
doi:10.1109/TSP.2012.2194289

15. Zhang, Z., W. Liu, W. Leng, A. Wang, and H. Shi, "Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 23, No. 1, 121-125, 2015.
doi:10.1109/LSP.2015.2504954

16. Yarkan, S., S. Guzelgoz, H. Arslan, and R. R. Murphy, "Underground mine communications: A survey," IEEE Communications Surveys & Tutorials, Vol. 11, No. 3, 125-142, 2009.
doi:10.1109/SURV.2009.090309

17. Mahinthan, V., B. Kannan, and A. Nallanathan, "Performance of LSE-RLS-based interference cancellation scheme for STBC multiuser systems," Electronics Letters, Vol. 38, No. 25, 1729-1730, 2003.
doi:10.1049/el:20021121

18. Wang, L., N. Kitaoka, and S. Nakagawa, "Distant-talking speech recognition based on spectral subtraction by multi-channel LMS algorithm," IEICE Trans. Inf. & Syst., Vol. 94, No. 3, 659-667, 2011.
doi:10.1587/transinf.E94.D.659