Vol. 70
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-05
A Compact QMSIW CSRR Bandpass Filter with Simultaneous Size Reduction and Improved Wide Stopband
By
Progress In Electromagnetics Research M, Vol. 70, 81-88, 2018
Abstract
A size-reduced quarter-mode substrate integrated waveguide (QMSIW) band-pass filter (BPF) loaded with combination of complementary split ring resonator (CSRR) and capacitive metal patches is presented. The CSRR generates a passband below the characteristic cutoff frequency of the substrate integrated waveguide (SIW) cavity. Improved stopband rejection is also attainable by loading a capacitive metal patch. Thus, a single-layer compact BPF with wide stopband is realized successfully. The equivalent-circuit model has been derived and analyzed. To verify the validity of the presented method, an experimental filter centered at 2.45 GHz is fabricated and measured. The new filter has the return loss of 16 dB and insertion loss less than 0.9 dB. Out-of-band suppression is better than 20 dB from 3 GHz to 11.6 GHz. The whole size of the filter is only 20×17.4×0.508 mm3, achieving 75% size reduction compared to the conventional structure.
Citation
Li Sun, Guo Hui Li, Ya-Na Yang, Wei Yang, and Xuexia Yang, "A Compact QMSIW CSRR Bandpass Filter with Simultaneous Size Reduction and Improved Wide Stopband," Progress In Electromagnetics Research M, Vol. 70, 81-88, 2018.
doi:10.2528/PIERM18040601
References

1. Huang, L. and H. Cha, "Compact ridge substrate integrated waveguide filter with transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 12, 778-780, 2015.
doi:10.1109/LMWC.2015.2496802

2. Wang, Y., W. Hong, Y. Dong, B. Liu, H.-J. Tang, J. Chen, X. Yin, and K.Wu, "Half mode substrate integrated waveguide (HMSIW) band-pass filter," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 4, 265-267, 2007.
doi:10.1109/LMWC.2007.892958

3. Zhang, Z., N. Yang, and K. Wu, "5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems," 2009 IEEE Radio and Wireless Symposium (RWS), 18-22, 2009.

4. Dong, Y.-D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

5. Khan, S. N., X. Liu, L. Shao, and Y. Wang, "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105

6. Senior, D. E., X. Cheng, and Y.-K. Yoon, "Electrically tunable evanescent mode half-mode substrate-integrated-waveguide resonators," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 123-125, 2012.
doi:10.1109/LMWC.2012.2183860

7. Yang, Z., Z. Wang, J. Dong, J. Liu, and T. Yang, "Compact wideband HMSIW bandpass filter with defected ground structure," 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-4, 2015.

8. Khalil, M., M. Kamarei, and J. Jomaah, "Compact multi-layer band-pass filter in Substrate Integrated Waveguide (SIW) technology," 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, 2016.

9. Jia, D., Q. Feng, Q. Xiang, and K. Wu, "Multilayer Substrate Integrated Waveguide (SIW) filters with higher-order mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 678-680, 2016.
doi:10.1109/LMWC.2016.2597222

10. Li, P., H. Chu, and R.-S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Trans. Compon. and Packag. Tech., Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958

11. Moscato, S., C. Tomassoni, M. Bozzi, and L. Perregrini, "Quarter-mode cavity filters in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 8, 2538-2547, 2016.
doi:10.1109/TMTT.2016.2577690

12. Guo, Z., K. S. Chin, W. Che, and C.-C. Chang, "Cross-coupled band-pass filters using QMSIW cavities and S-shaped slot coupling structures," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 160-167, 2013.
doi:10.1080/09205071.2013.741514

13. Shen, W., W.-Y. Yin, X.-W. Sun, and J.-F. Mao, "Compact coplanar waveguide-incorporated Substrate Integrated Waveguide (SIW) filter," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 871-879, 2010.
doi:10.1163/156939310791285164

14. Chen, R.-S., S.-W. Wong, L. Zhu, and Q.-X. Chu, "Wideband bandpass filter using U-slotted Substrate Integrated Waveguide (SIW) cavities," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 1, 1-3, 2015.
doi:10.1109/LMWC.2014.2363291

15. Shen, W., W.-Y. Yin, and X.-W. Sun, "Compact Substrate Integrated Waveguide (SIW) filter with defected ground structure," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 2, 83-85, 2011.
doi:10.1109/LMWC.2010.2091402

16. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Compact Substrate Integrated Waveguide (SIW) bandpass filter with Complementary Split-Ring Resonators (CSRRs)," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258