Vol. 67
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-11
Design of Grounding Grid Conductor Positioning Device on the Magnetic Field Method
By
Progress In Electromagnetics Research M, Vol. 67, 105-117, 2018
Abstract
The location and topology of grounding grid conductors are necessary to corrosion diagnosis and digging in most cases. In this paper, an integrated detecting device for grounding conductor buried position is designed. Based on the principle of magnetic field method, a multi-layer cascade PCB hollow coil sensor is designed. AC excitation current source, 16-channel control circuit, lock-in amplifier (LIA) circuit and 4-channel synchronous acquisition circuit are realized. The experimental test is completed for the integrated detection device, and results verify the feasibility of the system.
Citation
Xiaokuo Kou, Manling Dong, Fan Yang, Sheng Han, Ke Zhang, Lei Guo, and Guojun Ding, "Design of Grounding Grid Conductor Positioning Device on the Magnetic Field Method," Progress In Electromagnetics Research M, Vol. 67, 105-117, 2018.
doi:10.2528/PIERM18020205
References

1., 80-2013 - IEEE Guide for Safety in AC Substation Grounding, 2015.

2. Syrett, B. C. and J. A. Gorman, "Cost of corrosion in the electric power industry: An update," Materials Performance, Vol. 42, 7, 2003.
doi:10.1049/iet-gtd.2016.0263

3. Gouda, O. and A. Mohamed, "Ground Potential Rise (GPR) of faulty substations having equal and unequal spacing grounding grids conductors," IET Generation Transmission & Distribution, Vol. 11, No. 1, 18-26, 2017.

4. Gillies, D. A., J. D. Randolph, H. Abdallah, and R. S. Brown, "Current north american assessment and refurbishment practices of substation grounding systems," IEEE Transactions on Power Delivery, Vol. 20, 1886-1889, 2005.

5. Ramalho, L., W. Rocha, A. Nakamura, B. Arajo, A. Castro, A. Klautau, R. Lima, and R. Freire, "Data acquisition system for continuous monitoring of grounding grids in energized substations," International Symposium on Instrumentation Systems Circuits and Transducers, 113-117, 2016.
doi:10.1109/TIA.2015.2416241

6. Charalambous, C., N. Kokkinos, and A. Demetriou, "Impact of photovoltaic oriented DC stray current corrosion on large scale solar farms' grounding and third-party infrastructure: Modelling and assessment," IEEE Transactions on Industry Applications, Vol. 51, 5421-5430, 2015.

7. Du, J., J. Han, and W. Liu, "The research of grounding grid corrosion factors based on vector similarity and fuzzy techniques," International Symposium on Computer Consumer and Control, 625-629, 2014.
doi:10.1016/S0378-7796(01)00148-1

8. Colominas, I., J. Gómez-Calviño, F. Navarrina, and M. Casteleiro, "Computer analysis of earthing systems in horizontally or vertically layered soils," Electric Power Systems Research, Vol. 59, 149-156, 2001.
doi:10.1109/TMAG.2006.890969

9. Habjanic, A., M. Trlep, and J. Pihler, "The influence of an additional substance in the trenches surrounding the grounding grid's conductors on the grounding grid's performance," IEEE Transactions on Magnetics, Vol. 43, 1257-1260, 2007.
doi:10.2528/PIERM16082502

10. Liu, K., F. Yang, X. Wang, et al. "A novel resistance network node potential measurement method and application in grounding grids corrosion diagnosis," Progress In Electromagnetics Research M, Vol. 52, 9-20, 2016.

11. Wang, X., W. He, F. Yang, L. Zhu, and X. Liu, "Topology detection of grounding grids based on derivative method," Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, Vol. 30, 73-78, 2015.

12. Li, C., W. He, D. Yao, F. Yang, X. Kou, and X. Wang, "Topological measurement and characterization of substation grounding grids based on derivative method," International Journal of Electrical Power & Energy Systems, Vol. 63, 158-164, 2014.

13., C37.235-2007 - IEEE Guide for the Application of Rogowski Coils Used for Protective Relaying Purposes, 2008.