Vol. 64
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-14
A Compact Tri-Band Bandpass Filter Using Two Stub-Loaded Dual Mode Resonators
By
Progress In Electromagnetics Research M, Vol. 64, 201-209, 2018
Abstract
In this paper, we present a compact tri-band bandpass filter (BPF) using two stub-loaded dual mode resonators (SLDMRs) combined with intra-coupled internal resonators. The designed filter operates at 1.575, 2.4, and 3.45 GHz, corresponding to the GNSS, WLAN, and WiMAX applications, respectively. The passbands of the filter are determined by odd- and even-mode frequencies created by the SLDMR and the internal open loop resonator inside of it. The corresponding even-mode frequency can be adequately tuned by adjusting the length of the stub while the odd-mode frequency is fixed. Two transmission zeros (TZs) are introduced on each side of the passband to improve the selectivity of the implemented filter. Five TZs around the edges of three passbands make the passbands highly isolated, and these transmission zeros can be placed according to the desired choice. The proposed tri-band BPF was designed, fabricated and measured, and the simulated and measured results corresponded very well.
Citation
MuhibUr Rahman, and Jung-Dong Park, "A Compact Tri-Band Bandpass Filter Using Two Stub-Loaded Dual Mode Resonators," Progress In Electromagnetics Research M, Vol. 64, 201-209, 2018.
doi:10.2528/PIERM17120404
References

1. Zhang, X. Y., J. X. Chen, and Q. Xue, "Dual-band bandpass filters using stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, 583-585, 2007.
doi:10.1109/LMWC.2007.901768

2. Lai, X., C. H. Liang, H. Di, and B. Wu, "Design of tri-band filter based on stub loaded resonator and DGS resonator," IEEE Microwave and Wireless Components Letters, Vol. 20, 265-267, 2010.
doi:10.1109/LMWC.2010.2045584

3. Lan, S. W., M. H. Weng, and S. J. Chang, "A tri-band bandpass filter with wide stopband using symmetric stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 25, 19-21, 2015.
doi:10.1109/LMWC.2014.2365739

4. Wei, F., Y. J. Guo, P. Y. Qin, and X. W. Shi, "Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 25, 76-78, 2015.
doi:10.1109/LMWC.2014.2370233

5. Ma, D., Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.
doi:10.2528/PIER11040201

6. Lee, C. H., C. G. Hsu, and H. K. Jhuang, "Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs," IEEE Microwave and Wireless Components Letters, Vol. 16, 594-596, 2006.
doi:10.1109/LMWC.2006.884902

7. Chen, F. C. and Q. X. Chu, "Design of compact tri-band bandpass filters using assembled resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 165-171, 2009.
doi:10.1109/TMTT.2008.2008963

8. Lai, M. I. and S. K. Jeng, "Compact microstrip dual-band bandpass filters design using geneticalgorithm techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 160-168, 2006.
doi:10.1109/TMTT.2005.860327

9. Mokhtar, M., J. Bornemann, K. Rambabu, and S. Amari, "Coupling matrix design of dual and triple passband filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3940-3946, 2006.
doi:10.1109/TMTT.2006.884687

10. Luo, S., L. Zhu, and S. Sun, "Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1222-1229, 2011.
doi:10.1109/TMTT.2011.2123106

11. Chen, W. Y., M. H. Weng, and S. J. Chang, "A new tri-band bandpass filter based on stub-loaded step-impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, 179-181, 2012.
doi:10.1109/LMWC.2012.2187884

12. Chen, W. Y., S. J. Chang, M. H. Weng, Y. H. Su, and H. Kuan, "Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, WiMAX and WLAN applications," Microwave and Optical Technology Letters, Vol. 53, 1573-1576, 2011.
doi:10.1002/mop.26037

13. Cao, L. and L. Yin, "Novel tri-band bandpass filter with high selectivity," Progress In Electromagnetics Research Letters, Vol. 51, 127-133, 2015.
doi:10.2528/PIERL14121302

14. Liu, B. and Y. Zhao, "Compact tri-band bandpass filter for WLAN and WiMAX using tri-section stepped-impedance resonators," Progress In Electromagnetics Research Letters, Vol. 45, 39-44, 2014.
doi:10.2528/PIERL14011807

15. Zhang, X. Y., L. Gao, Z. Y. Cai, and X. L. Zhao, "Novel tri-band bandpass filter using stub-loaded short-ended resonator," Progress In Electromagnetics Research Letters, Vol. 40, 81-92, 2013.
doi:10.2528/PIERL13040205

16. Chen, W. Y., M. H. Weng, S. J. Chang, H. Kuan, and Y. H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

17. Chu, Q. X. and X. M. Lin, "Advanced triple-band bandpass filter using tri-section SIR," Electronics Letters, Vol. 44, 295-296, 2008.
doi:10.1049/el:20083096

18. Matthaei, G. L., L. Young, and E. M. T. Jones, "Couple strip transmission line filter sections," Microwave Filters, Impedance-Matching Networks and Coupling Structures, 217-228, Artech House, Norwood, MA, 1980.

19. Hong, J. S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.