Vol. 66
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-03
Insertable Waveguide Verification Standards for the Electromagnetic Characterization of Materials
By
Progress In Electromagnetics Research M, Vol. 66, 183-191, 2018
Abstract
A process is introduced to design and validate insertable rectangular-waveguide verification standards for the electromagnetic characterization of materials using the Nicolson-Ross-Weir method. Each insertable structure consists of a series of metal steps that acts as a surrogate material exhibiting smooth and predictable permittivity and permeability characteristics across the waveguide band. These known material properties can be used to assess the performance of material characterization systems. Since the verification standards are inserted into the waveguide in the same manner as samples under test, each step in the normal measurement procedure is duplicated. A specific example of an S-band verification standard is presented, with the standard fabricated using two different methods. The first standard is machined from a solid metal block while the second is constructed by metalizing a 3-D printed polymer structure. Comparison of the predicted material parameters to those extracted from experimental data demonstrates the utility of the proposed insertable standards.
Citation
Jonathan L. Frasch, Edward J. Rothwell, Premjeet Chahal, and John Doroshewitz, "Insertable Waveguide Verification Standards for the Electromagnetic Characterization of Materials," Progress In Electromagnetics Research M, Vol. 66, 183-191, 2018.
doi:10.2528/PIERM17111304
References

1. Volakis, J. L. and G. Kiziltas, "Novel materials for RF devices," 2007 IEEE Antennas and Propagation Society International Symposium, 1701-1704, Honolulu, HI, 2007.

2. Dimiev, A., W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, "Low-loss, high-permittivity composites made from graphene nanoribbons," ACS Appl. Mater. Interfaces, Vol. 3, No. 12, 4657-4661, 2011.
doi:10.1021/am201071h

3. Koulouridis, S., G. Kiziltas, Y. Zhou, D. Hansford, and J. L. Volakis, "Polymer ceramic composites for microwave applications: Fabrication and performance assessment," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 12, 4202-4208, 2006.
doi:10.1109/TMTT.2006.885887

4. Verma, A., A. K. Saxena, and D. C. Dube, "Microwave permittivity and permeability of ferrite-polymer thick films," J. Magn. Magn. Mater., Vol. 263, 228-234, 2003.
doi:10.1016/S0304-8853(02)01569-X

5. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic, Boston, MA, USA, 1996.
doi:10.1007/978-1-4613-0473-9

6. Feng, Y. B., T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," J. Magn. Magn. Mater., Vol. 318, 8-13, 2007.
doi:10.1016/j.jmmm.2007.04.012

7. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Trans. Magn., Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073

8. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, London, UK, 2004.
doi:10.1002/0470020466

9. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179

10. Larsson, C., D. Sjöberg, and L. Elmkvist, "Waveguide measurements of the permittivity and permeability at temperatures of up to 1000˚C," IEEE Trans. Instrum. Meas., Vol. 60, No. 8, 2872-2880, 2011.
doi:10.1109/TIM.2011.2122150

11. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

13. Baker-Jarvis, J., M. D. Janezic, J. H. Gosvenor, and R. G. Geyer, Transmission/Reflection and Short-Circuit Line Methods for Measuring Permittivity and Permeability, NIST Tech. Note 1355, U.S. Department of Commerce, Washington, DC, USA, 1992.

14. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and J. H. Gosvenor, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST Tech. Note 1536, U.S. Department of Commerce, Washington, DC, USA, 2005.

15. ASTM Standard D5568 "Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies using waveguide," ASTM International, West Conshohocken, PA, 2008.

16. Sharma, S. and D. Kaur, "Measurement of complex permittivity of polystyrene composite at 11.64 GHz using cavity perturbation technique," Applied Computational Electromagnetic Society Journal, Vol. 31, No. 1, 92-97, 2016.

17. Bridges, W. B., M. B. Klein, and E. Schweig, "Measurement of the dielectric constant and loss tangent of thallium mixed halide crystals KRS-5 and KRS-6 at 95 GHz," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 3, 286-292, 1982.
doi:10.1109/TMTT.1982.1131063

18. Baker-Jarvis, J., B. Riddle, and M. D. Janezic, Dielectric and Magnetic Properties of Printed Wiring Boards and Other Substrate Materials, NIST Tech. Note 1512, U.S. Department of Commerce, Washington, DC, USA, 1999.

19. Barber, J., J. C. Weatherall, B. T. Smith, S. Duffy, S. J. Goettler, and R. A. Krauss, "Millimeter wave measurements of explosives and simulants," Proc. SPIE 7670, Passive Millimeter-Wave Imaging Technology XIII, 76700E, April 27, 2010.

20. Baharudin, E., A. Ismail, A. R. H. Alhawari, E. S. Zainudin, D. L. A. A. Majid, and F. C. Seman, "Investigate of wave absorption performance for oil palmfrond and empty fruit bunch at 5.8 GHz," International Journal of Advanced and Applied Sciences, Vol. 9, 335-348, 2017.

21. Crowgey, B. R., J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A waveguide verification standard design procedure for the microwave characterization of magnetic materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504

22. Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, LTD, Chichester, United Kingdom, 2001.

23. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706

24. D’Auria, M., W. J. Otter, J. Hazell, B. T. W. Gillatt, C. Long-Collins, N. M. Ridler, and S. Lucyszyn, "3-D printed metal-pipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, No. 9, 1339-1349, 2015.
doi:10.1109/TCPMT.2015.2462130

25. Otter, W. J., N. M. Ridler, H. Yasukochi, K. Soeda, K. Konishi, J. Yumoto, M. Kuwata-Gonokami, and S. Lucyszyn, "3D printed 1.1 THz waveguides," Electron. Lett., Vol. 53, No. 7, 471-473, 2017.
doi:10.1049/el.2016.4662